These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Iterated intracochlear reflection shapes the envelopes of basilar-membrane click responses. Shera CA J Acoust Soc Am; 2015 Dec; 138(6):3717-22. PubMed ID: 26723327 [TBL] [Abstract][Full Text] [Related]
4. Stimulus Frequency Otoacoustic Emission Delays and Generating Mechanisms in Guinea Pigs, Chinchillas, and Simulations. Berezina-Greene MA; Guinan JJ J Assoc Res Otolaryngol; 2015 Dec; 16(6):679-94. PubMed ID: 26373935 [TBL] [Abstract][Full Text] [Related]
5. Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. Siegel JH; Cerka AJ; Recio-Spinoso A; Temchin AN; van Dijk P; Ruggero MA J Acoust Soc Am; 2005 Oct; 118(4):2434-43. PubMed ID: 16266165 [TBL] [Abstract][Full Text] [Related]
6. Medial olivocochlear efferent inhibition of basilar-membrane responses to clicks: evidence for two modes of cochlear mechanical excitation. Guinan JJ; Cooper NP J Acoust Soc Am; 2008 Aug; 124(2):1080-92. PubMed ID: 18681598 [TBL] [Abstract][Full Text] [Related]
7. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions. Nuttall AL; Ren T Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740 [TBL] [Abstract][Full Text] [Related]
8. Fast reverse propagation of sound in the living cochlea. He W; Fridberger A; Porsov E; Ren T Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393 [TBL] [Abstract][Full Text] [Related]
9. Coherent reflection without traveling waves: on the origin of long-latency otoacoustic emissions in lizards. Bergevin C; Shera CA J Acoust Soc Am; 2010 Apr; 127(4):2398-409. PubMed ID: 20370023 [TBL] [Abstract][Full Text] [Related]
10. The origin of periodicity in the spectrum of evoked otoacoustic emissions. Zweig G; Shera CA J Acoust Soc Am; 1995 Oct; 98(4):2018-47. PubMed ID: 7593924 [TBL] [Abstract][Full Text] [Related]
11. Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms. Charaziak KK; Siegel JH; Shera CA J Assoc Res Otolaryngol; 2018 Aug; 19(4):401-419. PubMed ID: 30014309 [TBL] [Abstract][Full Text] [Related]
12. Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels. Charaziak KK; Shera CA J Assoc Res Otolaryngol; 2021 Dec; 22(6):641-658. PubMed ID: 34606020 [TBL] [Abstract][Full Text] [Related]
13. Direction of wave propagation in the cochlea for internally excited basilar membrane. Li Y; Grosh K J Acoust Soc Am; 2012 Jun; 131(6):4710-21. PubMed ID: 22712944 [TBL] [Abstract][Full Text] [Related]
14. A comparison of OAEs arising from different generation mechanisms in guinea pig. Withnell RH; Dhar S; Thomsen A Hear Res; 2005 Sep; 207(1-2):76-86. PubMed ID: 15935577 [TBL] [Abstract][Full Text] [Related]
15. Fast Waves at the Base of the Cochlea. Recio-Spinoso A; Rhode WS PLoS One; 2015; 10(6):e0129556. PubMed ID: 26062000 [TBL] [Abstract][Full Text] [Related]
16. Reverse propagation of sound in the gerbil cochlea. Ren T Nat Neurosci; 2004 Apr; 7(4):333-4. PubMed ID: 15034589 [TBL] [Abstract][Full Text] [Related]
17. Otoacoustic estimation of cochlear tuning: validation in the chinchilla. Shera CA; Guinan JJ; Oxenham AJ J Assoc Res Otolaryngol; 2010 Sep; 11(3):343-65. PubMed ID: 20440634 [TBL] [Abstract][Full Text] [Related]
18. Effects of low-frequency biasing on otoacoustic and neural measures suggest that stimulus-frequency otoacoustic emissions originate near the peak region of the traveling wave. Lichtenhan JT J Assoc Res Otolaryngol; 2012 Feb; 13(1):17-28. PubMed ID: 22002610 [TBL] [Abstract][Full Text] [Related]
19. Basilar membrane vibration is not involved in the reverse propagation of otoacoustic emissions. He W; Ren T Sci Rep; 2013; 3():1874. PubMed ID: 23695199 [TBL] [Abstract][Full Text] [Related]
20. Nonlinear reflection as a cause of the short-latency component in stimulus-frequency otoacoustic emissions simulated by the methods of compression and suppression. Vencovský V; Vetešník A; Gummer AW J Acoust Soc Am; 2020 Jun; 147(6):3992. PubMed ID: 32611132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]