These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 23556598)
21. Detection of acoustic temporal fine structure by cochlear implant listeners: behavioral results and computational modeling. Imennov NS; Won JH; Drennan WR; Jameyson E; Rubinstein JT Hear Res; 2013 Apr; 298():60-72. PubMed ID: 23333260 [TBL] [Abstract][Full Text] [Related]
22. Binaural timing information in electric hearing at low rates: Effects of inaccurate encoding and loudness. Egger K; Majdak P; Laback B J Acoust Soc Am; 2017 May; 141(5):3164. PubMed ID: 28599571 [TBL] [Abstract][Full Text] [Related]
23. Psychoacoustic and electrophysiological electric-acoustic interaction effects in cochlear implant users with ipsilateral residual hearing. Imsiecke M; Büchner A; Lenarz T; Nogueira W Hear Res; 2020 Feb; 386():107873. PubMed ID: 31884220 [TBL] [Abstract][Full Text] [Related]
24. Effects of pulse shape on pitch sensitivity of cochlear implant users. Arslan NO; Luo X Hear Res; 2024 Sep; 450():109075. PubMed ID: 38986164 [TBL] [Abstract][Full Text] [Related]
25. Binaural sensitivity as a function of interaural electrode position with a bilateral cochlear implant user. Long CJ; Eddington DK; Colburn HS; Rabinowitz WM J Acoust Soc Am; 2003 Sep; 114(3):1565-74. PubMed ID: 14514210 [TBL] [Abstract][Full Text] [Related]
26. The effect of interaural differences in envelope shape on the perceived location of sounds (L). Francart T; Lenssen A; Wouters J J Acoust Soc Am; 2012 Aug; 132(2):611-4. PubMed ID: 22894182 [TBL] [Abstract][Full Text] [Related]
27. Vowel identification by cochlear implant users: contributions of static and dynamic spectral cues. Donaldson GS; Rogers CL; Cardenas ES; Russell BA; Hanna NH J Acoust Soc Am; 2013 Oct; 134(4):3021-8. PubMed ID: 24116437 [TBL] [Abstract][Full Text] [Related]
28. Effect of mismatched place-of-stimulation on the salience of binaural cues in conditions that simulate bilateral cochlear-implant listening. Goupell MJ; Stoelb C; Kan A; Litovsky RY J Acoust Soc Am; 2013 Apr; 133(4):2272-87. PubMed ID: 23556595 [TBL] [Abstract][Full Text] [Related]
29. The ability of cochlear implant users to use temporal envelope cues recovered from speech frequency modulation. Won JH; Lorenzi C; Nie K; Li X; Jameyson EM; Drennan WR; Rubinstein JT J Acoust Soc Am; 2012 Aug; 132(2):1113-9. PubMed ID: 22894230 [TBL] [Abstract][Full Text] [Related]
30. Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners. Jones H; Kan A; Litovsky RY Trends Hear; 2014 Nov; 18():. PubMed ID: 25385244 [TBL] [Abstract][Full Text] [Related]
31. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils. Vollmer M J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238 [TBL] [Abstract][Full Text] [Related]
32. Neural Coding of Interaural Time Differences with Bilateral Cochlear Implants in Unanesthetized Rabbits. Chung Y; Hancock KE; Delgutte B J Neurosci; 2016 May; 36(20):5520-31. PubMed ID: 27194332 [TBL] [Abstract][Full Text] [Related]
33. Interaural time difference sensitivity under binaural cochlear implant stimulation persists at high pulse rates up to 900 pps. Buck AN; Buchholz S; Schnupp JW; Rosskothen-Kuhl N Sci Rep; 2023 Mar; 13(1):3785. PubMed ID: 36882473 [TBL] [Abstract][Full Text] [Related]
34. Envelope enhancement increases cortical sensitivity to interaural envelope delays with acoustic and electric hearing. Hartley DE; Isaiah A PLoS One; 2014; 9(8):e104097. PubMed ID: 25093417 [TBL] [Abstract][Full Text] [Related]
35. Sensitivity to binaural timing in bilateral cochlear implant users. van Hoesel RJ J Acoust Soc Am; 2007 Apr; 121(4):2192-206. PubMed ID: 17471733 [TBL] [Abstract][Full Text] [Related]
36. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners. Ross B Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860 [TBL] [Abstract][Full Text] [Related]
37. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing. Carroll J; Tiaden S; Zeng FG J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360 [TBL] [Abstract][Full Text] [Related]
38. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users. Kan A; Litovsky RY; Goupell MJ Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660 [TBL] [Abstract][Full Text] [Related]
39. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing. Oxenham AJ; Kreft HA Trends Hear; 2014 Oct; 18():. PubMed ID: 25315376 [TBL] [Abstract][Full Text] [Related]
40. Effects of Monaural Temporal Electrode Asynchrony and Channel Interactions in Bilateral and Unilateral Cochlear-Implant Stimulation. Lindenbeck MJ; Majdak P; Laback B Trends Hear; 2024; 28():23312165241271340. PubMed ID: 39215517 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]