These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 23556703)

  • 1. Analytical energy gradient used in variational Born-Oppenheimer calculations with all-electron explicitly correlated Gaussian functions for molecules containing one π electron.
    Tung WC; Pavanello M; Sharkey KL; Kirnosov N; Adamowicz L
    J Chem Phys; 2013 Mar; 138(12):124101. PubMed ID: 23556703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-accuracy calculations of the ground, 1 1A1', and the 2 1A1', 2 3A1', and 1 1E' excited states of H3+.
    Pavanello M; Adamowicz L
    J Chem Phys; 2009 Jan; 130(3):034104. PubMed ID: 19173507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An algorithm for nonrelativistic quantum-mechanical finite-nuclear-mass variational calculations of nitrogen atom in L = 0, M = 0 states using all-electrons explicitly correlated Gaussian basis functions.
    Sharkey KL; Adamowicz L
    J Chem Phys; 2014 May; 140(17):174112. PubMed ID: 24811630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1.
    Bubin S; Adamowicz L
    J Chem Phys; 2008 Mar; 128(11):114107. PubMed ID: 18361554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An algorithm for calculating atomic D states with explicitly correlated gaussian functions.
    Sharkey KL; Bubin S; Adamowicz L
    J Chem Phys; 2011 Jan; 134(4):044120. PubMed ID: 21280700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An algorithm for non-Born-Oppenheimer quantum mechanical variational calculations of N = 1 rotationally excited states of diatomic molecules using all-particle explicitly correlated Gaussian functions.
    Sharkey KL; Kirnosov N; Adamowicz L
    J Chem Phys; 2013 Oct; 139(16):164119. PubMed ID: 24182016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct non-Born-Oppenheimer variational calculations of all bound vibrational states corresponding to the first rotational excitation of D2 performed with explicitly correlated all-particle Gaussian functions.
    Sharkey KL; Kirnosov N; Adamowicz L
    J Chem Phys; 2015 May; 142(17):174307. PubMed ID: 25956100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular structure calculations: a unified quantum mechanical description of electrons and nuclei using explicitly correlated Gaussian functions and the global vector representation.
    Mátyus E; Reiher M
    J Chem Phys; 2012 Jul; 137(2):024104. PubMed ID: 22803525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate potential energy curve of the LiH+ molecule calculated with explicitly correlated Gaussian functions.
    Tung WC; Adamowicz L
    J Chem Phys; 2014 Mar; 140(12):124315. PubMed ID: 24697449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge asymmetry in pure vibrational states of the HD molecule.
    Bubin S; Leonarski F; Stanke M; Adamowicz L
    J Chem Phys; 2009 Mar; 130(12):124120. PubMed ID: 19334821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculations of the ground states of BeH and BeH+ without the Born-Oppenheimer approximation.
    Bubin S; Adamowicz L
    J Chem Phys; 2007 Jun; 126(21):214305. PubMed ID: 17567194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Born-Oppenheimer calculations of the BH molecule.
    Bubin S; Stanke M; Adamowicz L
    J Chem Phys; 2009 Jul; 131(4):044128. PubMed ID: 19655858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix elements of N-particle explicitly correlated Gaussian basis functions with complex exponential parameters.
    Bubin S; Adamowicz L
    J Chem Phys; 2006 Jun; 124(22):224317. PubMed ID: 16784284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Born-Oppenheimer variational calculation of the ground-state vibrational spectrum of LiH+.
    Bubin S; Adamowicz L
    J Chem Phys; 2006 Aug; 125(6):64309. PubMed ID: 16942288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron affinity of (7)Li calculated with the inclusion of nuclear motion and relativistic corrections.
    Stanke M; Kedziera D; Bubin S; Adamowicz L
    J Chem Phys; 2007 Oct; 127(13):134107. PubMed ID: 17919011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Born-Oppenheimer study of positronic molecular systems: e(+)LiH.
    Bubin S; Adamowicz L
    J Chem Phys; 2004 Apr; 120(13):6051-5. PubMed ID: 15267488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High precision variational calculations for the Born-Oppenheimer energies of the ground state of the hydrogen molecule.
    Sims JS; Hagstrom SA
    J Chem Phys; 2006 Mar; 124(9):94101. PubMed ID: 16526839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explicitly correlated Gaussian calculations of the 2P(o) Rydberg spectrum of the lithium atom.
    Bubin S; Adamowicz L
    J Chem Phys; 2012 Apr; 136(13):134305. PubMed ID: 22482550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Sigma(-) states of the molecular hydrogen.
    Komasa J
    Phys Chem Chem Phys; 2008 Jun; 10(23):3383-9. PubMed ID: 18535721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of 2D Rydberg energy levels of 6Li and 7Li based on very accurate quantum mechanical calculations performed with explicitly correlated Gaussian functions.
    Bubin S; Sharkey KL; Adamowicz L
    J Chem Phys; 2013 Apr; 138(16):164308. PubMed ID: 23635139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.