These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 23556715)
1. Accurate prediction of nuclear magnetic resonance shielding constants: towards the accuracy of CCSD(T) complete basis set limit. Sun M; Zhang IY; Wu A; Xu X J Chem Phys; 2013 Mar; 138(12):124113. PubMed ID: 23556715 [TBL] [Abstract][Full Text] [Related]
2. Accurate prediction of nuclear magnetic resonance shielding constants: An extension of the focal-point analysis method for magnetic parameter calculations (FPA-M) with improved efficiency. Wang K; Sun M; Cui D; Shen T; Wu A; Xu X J Chem Phys; 2018 Nov; 149(18):184101. PubMed ID: 30441917 [TBL] [Abstract][Full Text] [Related]
3. Benchmark theoretical study of the π-π binding energy in the benzene dimer. Miliordos E; Aprà E; Xantheas SS J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749 [TBL] [Abstract][Full Text] [Related]
4. Quantitative prediction of gas-phase (15)N and (31)P nuclear magnetic shielding constants. Prochnow E; Auer AA J Chem Phys; 2010 Feb; 132(6):064109. PubMed ID: 20151735 [TBL] [Abstract][Full Text] [Related]
5. Estimation of isotropic nuclear magnetic shieldings in the CCSD(T) and MP2 complete basis set limit using affordable correlation calculations. Kupka T; Stachów M; Kaminsky J; Sauer SP Magn Reson Chem; 2013 Aug; 51(8):482-9. PubMed ID: 23749459 [TBL] [Abstract][Full Text] [Related]
6. Benchmarking density-functional theory calculations of NMR shielding constants and spin-rotation constants using accurate coupled-cluster calculations. Teale AM; Lutnæs OB; Helgaker T; Tozer DJ; Gauss J J Chem Phys; 2013 Jan; 138(2):024111. PubMed ID: 23320672 [TBL] [Abstract][Full Text] [Related]
7. Simple coupled-cluster singles and doubles method with perturbative inclusion of triples and explicitly correlated geminals: The CCSD(T)R12 model. Valeev EF; Daniel Crawford T J Chem Phys; 2008 Jun; 128(24):244113. PubMed ID: 18601323 [TBL] [Abstract][Full Text] [Related]
9. Complete basis set limit of Ab initio binding energies and geometrical parameters for various typical types of complexes. Min SK; Lee EC; Lee HM; Kim DY; Kim D; Kim KS J Comput Chem; 2008 Jun; 29(8):1208-21. PubMed ID: 18074343 [TBL] [Abstract][Full Text] [Related]
10. On the Accuracy of Density Functional Theory to Predict Shifts in Nuclear Magnetic Resonance Shielding Constants due to Hydrogen Bonding. Kongsted J; Aidas K; Mikkelsen KV; Sauer SP J Chem Theory Comput; 2008 Feb; 4(2):267-77. PubMed ID: 26620658 [TBL] [Abstract][Full Text] [Related]
11. On the accuracy of explicitly correlated coupled-cluster interaction energies--have orbital results been beaten yet? Patkowski K J Chem Phys; 2012 Jul; 137(3):034103. PubMed ID: 22830679 [TBL] [Abstract][Full Text] [Related]
12. MP2.5 and MP2.X: approaching CCSD(T) quality description of noncovalent interaction at the cost of a single CCSD iteration. Sedlak R; Riley KE; Řezáč J; Pitoňák M; Hobza P Chemphyschem; 2013 Mar; 14(4):698-707. PubMed ID: 23315749 [TBL] [Abstract][Full Text] [Related]
13. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets. Hill JG; Peterson KA; Knizia G; Werner HJ J Chem Phys; 2009 Nov; 131(19):194105. PubMed ID: 19929044 [TBL] [Abstract][Full Text] [Related]
14. Intermolecular potential energy surface for CS2 dimer. Farrokhpour H; Mombeini Z; Namazian M; Coote ML J Comput Chem; 2011 Apr; 32(5):797-809. PubMed ID: 20941736 [TBL] [Abstract][Full Text] [Related]
15. Spin component-scaled second-order Møller-Plesset perturbation theory for calculating NMR shieldings. Maurer M; Ochsenfeld C J Chem Theory Comput; 2015 Jan; 11(1):37-44. PubMed ID: 26574201 [TBL] [Abstract][Full Text] [Related]
16. Basis set dependence of higher-order correlation effects in π-type interactions. Carrell EJ; Thorne CM; Tschumper GS J Chem Phys; 2012 Jan; 136(1):014103. PubMed ID: 22239765 [TBL] [Abstract][Full Text] [Related]
17. From CCSD(T)/aug-cc-pVTZ-J to CCSD(T) complete basis set limit isotropic nuclear magnetic shieldings via affordable DFT/CBS calculations. Kupka T; Stachów M; Nieradka M; Kaminsky J; Pluta T; Sauer SP Magn Reson Chem; 2011 May; 49(5):231-6. PubMed ID: 21387405 [TBL] [Abstract][Full Text] [Related]
18. Is spin-component scaled second-order Møller-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules? Antony J; Grimme S J Phys Chem A; 2007 Jun; 111(22):4862-8. PubMed ID: 17506533 [TBL] [Abstract][Full Text] [Related]
19. Toward a less costly but accurate calculation of the CCSD(T)/CBS noncovalent interaction energy. Chen JL; Sun T; Wang YB; Wang W J Comput Chem; 2020 May; 41(13):1252-1260. PubMed ID: 32045021 [TBL] [Abstract][Full Text] [Related]
20. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level. Dabkowska I; Jurecka P; Hobza P J Chem Phys; 2005 May; 122(20):204322. PubMed ID: 15945739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]