These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 23556725)

  • 1. Full-dimensional quantum calculations of the vibrational states of H5(+).
    Song H; Lee SY; Yang M; Lu Y
    J Chem Phys; 2013 Mar; 138(12):124309. PubMed ID: 23556725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramolecular proton transfer in malonaldehyde: accurate multilayer multi-configurational time-dependent Hartree calculations.
    Hammer T; Manthe U
    J Chem Phys; 2011 Jun; 134(22):224305. PubMed ID: 21682512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.
    Viel A; Coutinho-Neto MD; Manthe U
    J Chem Phys; 2007 Jan; 126(2):024308. PubMed ID: 17228955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational dynamics of the H5(+) and its isotopologues from multiconfiguration time-dependent Hartree calculations.
    Valdés Á; Prosmiti R; Delgado-Barrio G
    J Chem Phys; 2012 Dec; 137(21):214308. PubMed ID: 23231232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies of the tunneling splitting of malonaldehyde using the multiconfiguration time-dependent Hartree approach.
    Schröder M; Gatti F; Meyer HD
    J Chem Phys; 2011 Jun; 134(23):234307. PubMed ID: 21702556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of the vibrational excited states of malonaldehyde and their tunneling splittings with the multi-configuration time-dependent Hartree method.
    Schröder M; Meyer HD
    J Chem Phys; 2014 Jul; 141(3):034116. PubMed ID: 25053310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiconfigurational time-dependent Hartree calculations for tunneling splittings of vibrational states: Theoretical considerations and application to malonaldehyde.
    Hammer T; Coutinho-Neto MD; Viel A; Manthe U
    J Chem Phys; 2009 Dec; 131(22):224109. PubMed ID: 20001026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-dimensional quantum calculations of the dissociation energy, zero-point, and 10 K properties of H7+/D7+ clusters using an ab initio potential energy surface.
    Barragán P; Pérez de Tudela R; Qu C; Prosmiti R; Bowman JM
    J Chem Phys; 2013 Jul; 139(2):024308. PubMed ID: 23862944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotation/Torsion Coupling in H5(+), D5(+), H4D(+), and HD4(+) Using Diffusion Monte Carlo.
    Marlett ML; Lin Z; McCoy AB
    J Phys Chem A; 2015 Sep; 119(35):9405-13. PubMed ID: 26204429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface.
    Wang Y; Braams BJ; Bowman JM; Carter S; Tew DP
    J Chem Phys; 2008 Jun; 128(22):224314. PubMed ID: 18554020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles simulations of vibrational states and spectra for H5(+) and D5(+) clusters using multiconfiguration time-dependent Hartree approach.
    Valdés Á; Prosmiti R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Feb; 119():26-33. PubMed ID: 23763866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-dimensional MCTDH/MGPF study of the ground and lowest lying vibrational states of the bihydroxide H3O2(-) complex.
    Peláez D; Sadri K; Meyer HD
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Feb; 119():42-51. PubMed ID: 23831046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio global potential-energy surface for H5(+) --> H3(+) + H2.
    Xie Z; Braams BJ; Bowman JM
    J Chem Phys; 2005 Jun; 122(22):224307. PubMed ID: 15974668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitonic splitting, delocalization, and vibronic quenching in the benzonitrile dimer.
    Balmer FA; Ottiger P; Leutwyler S
    J Phys Chem A; 2014 Nov; 118(47):11253-61. PubMed ID: 25353324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-dimensional quantum dynamics calculations of H(2)-H(2) collisions.
    Balakrishnan N; Quéméner G; Forrey RC; Hinde RJ; Stancil PC
    J Chem Phys; 2011 Jan; 134(1):014301. PubMed ID: 21218997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-dimensional vibrational calculations for H5O2+ using an ab initio potential energy surface.
    McCoy AB; Huang X; Carter S; Landeweer MY; Bowman JM
    J Chem Phys; 2005 Feb; 122(6):061101. PubMed ID: 15740358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.
    Vendrell O; Brill M; Gatti F; Lauvergnat D; Meyer HD
    J Chem Phys; 2009 Jun; 130(23):234305. PubMed ID: 19548725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical investigation of the infrared spectra of the H5(+) and D5(+) cations.
    Valdés Á; Prosmiti R
    J Phys Chem A; 2013 Oct; 117(39):9518-24. PubMed ID: 23390977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the structure and spectroscopy of H5(+) using diffusion Monte Carlo.
    Lin Z; McCoy AB
    J Phys Chem A; 2013 Nov; 117(46):11725-36. PubMed ID: 23560453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. I. Hamiltonian setup and analysis of the ground vibrational state.
    Vendrell O; Gatti F; Lauvergnat D; Meyer HD
    J Chem Phys; 2007 Nov; 127(18):184302. PubMed ID: 18020634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.