These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23556765)

  • 1. Dynamics of thermal vibrational motions and stringlike jump motions in three-dimensional glass-forming liquids.
    Kawasaki T; Onuki A
    J Chem Phys; 2013 Mar; 138(12):12A514. PubMed ID: 23556765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow relaxations and stringlike jump motions in fragile glass-forming liquids: breakdown of the Stokes-Einstein relation.
    Kawasaki T; Onuki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012312. PubMed ID: 23410336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing Microscopic and Macroscopic Dynamics in a Paradigmatic Model of Glass-Forming Molecular Liquid.
    Porpora G; Rusciano F; Pastore R; Greco F
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially heterogeneous dynamics and the Adam-Gibbs relation in the Dzugutov liquid.
    Gebremichael Y; Vogel M; Bergroth MN; Starr FW; Glotzer SC
    J Phys Chem B; 2005 Aug; 109(31):15068-79. PubMed ID: 16852907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. String-like collective atomic motion in the melting and freezing of nanoparticles.
    Zhang H; Kalvapalle P; Douglas JF
    J Phys Chem B; 2011 Dec; 115(48):14068-76. PubMed ID: 21718061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Evidence of Void-Induced Structural Relaxations in Colloidal Glass Formers.
    Yip CT; Isobe M; Chan CH; Ren S; Wong KP; Huo Q; Lee CS; Tsang YH; Han Y; Lam CH
    Phys Rev Lett; 2020 Dec; 125(25):258001. PubMed ID: 33416386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependent protein dynamics: a simulation-based probabilistic diffusion-vibration Langevin description.
    Moritsugu K; Smith JC
    J Phys Chem B; 2006 Mar; 110(11):5807-16. PubMed ID: 16539528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependent micro-rheology of a glass-forming polymer melt studied by molecular dynamics simulation.
    Kuhnhold A; Paul W
    J Chem Phys; 2014 Sep; 141(12):124907. PubMed ID: 25273474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.
    Yagasaki T; Saito S
    Acc Chem Res; 2009 Sep; 42(9):1250-8. PubMed ID: 19469530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of local structure on motions on the potential energy landscape for a model supercooled polymer.
    Jain TS; de Pablo JJ
    J Chem Phys; 2005 May; 122(17):174515. PubMed ID: 15910053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helium atom diffraction measurements of the surface structure and vibrational dynamics of CH(3)-Si(111) and CD(3)-Si(111) surfaces.
    Becker JS; Brown RD; Johansson E; Lewis NS; Sibener SJ
    J Chem Phys; 2010 Sep; 133(10):104705. PubMed ID: 20849184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mosaic energy landscapes of liquids and the control of protein conformational dynamics by glass-forming solvents.
    Lubchenko V; Wolynes PG; Frauenfelder H
    J Phys Chem B; 2005 Apr; 109(15):7488-99. PubMed ID: 16851860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow dynamics in glassy methyl alpha-l-rhamnopyranoside studied by 1D NMR exchange experiments.
    Reichert D; Kovermann M; Hunter N; Hughes D; Pascui O; Belton P
    Phys Chem Chem Phys; 2008 Jan; 10(4):542-9. PubMed ID: 18183315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of spatially heterogeneous dynamics in a model of viscous silica.
    Vogel M; Glotzer SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061504. PubMed ID: 15697371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics in a tetrahedral network glassformer: vibrations, network rearrangements, and diffusion.
    Kawasaki T; Kim K; Onuki A
    J Chem Phys; 2014 May; 140(18):184502. PubMed ID: 24832283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of dynamic facilitation in molecular dynamics simulations of glass-forming liquids.
    Bergroth MN; Vogel M; Glotzer SC
    J Phys Chem B; 2005 Apr; 109(14):6748-53. PubMed ID: 16851759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of proton transfer and vibrational relaxation in dilute hydrofluoric acid.
    Joutsuka T; Ando K
    J Phys Chem A; 2011 Feb; 115(5):678-84. PubMed ID: 21210667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural rearrangements in water viewed through two-dimensional infrared spectroscopy.
    Roberts ST; Ramasesha K; Tokmakoff A
    Acc Chem Res; 2009 Sep; 42(9):1239-49. PubMed ID: 19585982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational analysis of x-ray absorption fine structure thermal factors by ab initio molecular dynamics: the Zn(II) ion in aqueous solution as a case study.
    Rega N; Brancato G; Petrone A; Caruso P; Barone V
    J Chem Phys; 2011 Feb; 134(7):074504. PubMed ID: 21341856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.