These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

867 related articles for article (PubMed ID: 23556800)

  • 21. Molecular dynamics simulations of melting and the glass transition of nitromethane.
    Zheng L; Luo SN; Thompson DL
    J Chem Phys; 2006 Apr; 124(15):154504. PubMed ID: 16674239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathways of cluster growth and kinetic slowing down in a model of short-range attractive colloids.
    Pérez T; Liu Y; Li W; Gunton JD; Chakrabarti A
    Langmuir; 2011 Sep; 27(18):11401-8. PubMed ID: 21827168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the density scaling of pVT data and transport properties for molecular and ionic liquids.
    López ER; Pensado AS; Fernández J; Harris KR
    J Chem Phys; 2012 Jun; 136(21):214502. PubMed ID: 22697553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Connection between the packing efficiency of binary hard spheres and the glass-forming ability of bulk metallic glasses.
    Zhang K; Smith WW; Wang M; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032311. PubMed ID: 25314450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Equilibrium phase behavior and maximally random jammed state of truncated tetrahedra.
    Chen D; Jiao Y; Torquato S
    J Phys Chem B; 2014 Jul; 118(28):7981-92. PubMed ID: 24716833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Eighth Liquid Matter Conference.
    Dellago C; Kahl G; Likos CN
    J Phys Condens Matter; 2012 Jul; 24(28):280301. PubMed ID: 22740596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: a systematic analysis of multi-point and multi-time correlations.
    Kim K; Saito S
    J Chem Phys; 2013 Mar; 138(12):12A506. PubMed ID: 23556757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Universal critical-like scaling of dynamic properties in symmetry-selected glass formers.
    Drozd-Rzoska A; Rzoska SJ; Paluch M
    J Chem Phys; 2008 Nov; 129(18):184509. PubMed ID: 19045416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast and slow crystal growth kinetics in glass-forming melts.
    Orava J; Greer AL
    J Chem Phys; 2014 Jun; 140(21):214504. PubMed ID: 24908023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contact network in nearly jammed disordered packings of hard-sphere chains.
    Karayiannis NCh; Foteinopoulou K; Laso M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011307. PubMed ID: 19658698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracting energy and structure properties of glass-forming liquids from structural relaxation time.
    Wang L
    J Phys Condens Matter; 2012 Apr; 24(15):155103. PubMed ID: 22436503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dense crystalline packings of ellipsoids.
    Jin W; Jiao Y; Liu L; Yuan Y; Li S
    Phys Rev E; 2017 Mar; 95(3-1):033003. PubMed ID: 28415357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties.
    Kiss PT; Bertsyk P; Baranyai A
    J Chem Phys; 2012 Nov; 137(19):194102. PubMed ID: 23181289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiative charge transfer in He(+) + H2 collisions in the milli- to nano-electron-volt range: a theoretical study within state-to-state and optical potential approaches.
    Mrugała F; Kraemer WP
    J Chem Phys; 2013 Mar; 138(10):104315. PubMed ID: 23514497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Melting temperature of ice Ih calculated from coexisting solid-liquid phases.
    Wang J; Yoo S; Bai J; Morris JR; Zeng XC
    J Chem Phys; 2005 Jul; 123(3):36101. PubMed ID: 16080767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How do glassy domains grow?
    Nandi SK; Ramaswamy S
    Phys Rev Lett; 2012 Sep; 109(11):115702. PubMed ID: 23005646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glass transitions in aqueous solutions of protein (bovine serum albumin).
    Shinyashiki N; Yamamoto W; Yokoyama A; Yoshinari T; Yagihara S; Kita R; Ngai KL; Capaccioli S
    J Phys Chem B; 2009 Oct; 113(43):14448-56. PubMed ID: 19799444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The glass transition and the distribution of voids in room-temperature ionic liquids: a molecular dynamics study.
    Forero-Martinez NC; Cortes-Huerto R; Ballone P
    J Chem Phys; 2012 May; 136(20):204510. PubMed ID: 22667574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.