These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 23556810)
1. A flash-lamp based device for fluorescence detection and identification of individual pollen grains. Kiselev D; Bonacina L; Wolf JP Rev Sci Instrum; 2013 Mar; 84(3):033302. PubMed ID: 23556810 [TBL] [Abstract][Full Text] [Related]
2. Classification of pollen species using autofluorescence image analysis. Mitsumoto K; Yabusaki K; Aoyagi H J Biosci Bioeng; 2009 Jan; 107(1):90-4. PubMed ID: 19147117 [TBL] [Abstract][Full Text] [Related]
3. Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm. Wang C; Pan YL; James D; Wetmore AE; Redding B Anal Chim Acta; 2014 Apr; 820():119-32. PubMed ID: 24745745 [TBL] [Abstract][Full Text] [Related]
4. Clustering approach for the analysis of the fluorescent bioaerosol collected by an automatic detector. Daunys G; Šukienė L; Vaitkevičius L; Valiulis G; Sofiev M; Šaulienė I PLoS One; 2021; 16(3):e0247284. PubMed ID: 33705418 [TBL] [Abstract][Full Text] [Related]
6. Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements. Sivaprakasam V; Lin HB; Huston AL; Eversole JD Opt Express; 2011 Mar; 19(7):6191-208. PubMed ID: 21451645 [TBL] [Abstract][Full Text] [Related]
7. Comparison of fluorescence spectroscopy and FTIR in differentiation of plant pollens. Mularczyk-Oliwa M; Bombalska A; Kaliszewski M; Włodarski M; Kopczyński K; Kwaśny M; Szpakowska M; Trafny EA Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():246-54. PubMed ID: 22765943 [TBL] [Abstract][Full Text] [Related]
8. Particle-fluorescence spectrometer for real-time single-particle measurements of atmospheric organic carbon and biological aerosol. Pan YL; Pinnick RG; Hill SC; Chang RK Environ Sci Technol; 2009 Jan; 43(2):429-34. PubMed ID: 19238975 [TBL] [Abstract][Full Text] [Related]
9. Development and characterization of an inexpensive single-particle fluorescence spectrometer for bioaerosol monitoring. Swanson BE; Huffman JA Opt Express; 2018 Feb; 26(3):3646-3660. PubMed ID: 29401892 [TBL] [Abstract][Full Text] [Related]
10. Development and calibration of a single UV LED based bioaerosol monitor. Zhang P; Zhao Y; Liao X; Yang W; Zhu Y; Huang H Opt Express; 2013 Nov; 21(22):26303-10. PubMed ID: 24216853 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence spectra and images of latent fingerprints excited with a tunable laser in the ultraviolet region. Akiba N; Saitoh N; Kuroki K J Forensic Sci; 2007 Sep; 52(5):1103-6. PubMed ID: 17767656 [TBL] [Abstract][Full Text] [Related]
12. Towards an Automatic Pollen Detection System in Ambient Air Using Scattering Functions in the Visible Domain. Renard JB; El Azari H; Richard J; Lauthier J; Surcin J Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808483 [TBL] [Abstract][Full Text] [Related]
13. [Study the characteristics of dissolved organic matter and turbidity of water using laser induced fluorescence and laser scattering]. Zhao NJ; Liu WQ; Li HB; Cui ZC; Zhang YJ; Liu JG; Ding ZQ; Yang LS Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Sep; 25(9):1460-2. PubMed ID: 16379290 [TBL] [Abstract][Full Text] [Related]
14. Classification of organic and biological materials with deep ultraviolet excitation. Bhartia R; Hug WF; Salas EC; Reid RD; Sijapati KK; Tsapin A; Abbey W; Nealson KH; Lane AL; Conrad PG Appl Spectrosc; 2008 Oct; 62(10):1070-7. PubMed ID: 18926014 [TBL] [Abstract][Full Text] [Related]
15. Label-free real-time imaging in microchip free-flow electrophoresis applying high speed deep UV fluorescence scanning. Köhler S; Nagl S; Fritzsche S; Belder D Lab Chip; 2012 Feb; 12(3):458-63. PubMed ID: 22011722 [TBL] [Abstract][Full Text] [Related]
16. Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles. Huang HC; Pan YL; Hill SC; Pinnick RG; Chang RK Opt Express; 2008 Oct; 16(21):16523-8. PubMed ID: 18852760 [TBL] [Abstract][Full Text] [Related]
17. Dual-channel mobile fluorescence lidar system for detection of tryptophan. Chen S; Chen Y; Zhang Y; Guo P; Wu H; Li X; Chen H Appl Opt; 2020 Jan; 59(3):607-613. PubMed ID: 32225184 [TBL] [Abstract][Full Text] [Related]
18. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR. Joshi D; Kumar D; Maini AK; Sharma RC Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():446-56. PubMed ID: 23719340 [TBL] [Abstract][Full Text] [Related]
19. Green and ultraviolet pulse generation with a compact, fiber laser, chirped-pulse amplification system for aerosol fluorescence measurements. Lou JW; Currie M; Sivaprakasam V; Eversole JD Rev Sci Instrum; 2010 Oct; 81(10):103107. PubMed ID: 21034075 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous laser-induced fluorescence and scattering detection of individual particles separated by capillary electrophoresis. Andreyev D; Arriaga EA Anal Chem; 2007 Jul; 79(14):5474-8. PubMed ID: 17555300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]