These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23556855)

  • 1. Note: Near-field imaging of thermal radiation at low temperatures by passive millimeter-wave microscopy.
    Nozokido T; Ishino M; Kudo H; Bae J
    Rev Sci Instrum; 2013 Mar; 84(3):036103. PubMed ID: 23556855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sensitive near-field microscope for thermal radiation.
    Kajihara Y; Kosaka K; Komiyama S
    Rev Sci Instrum; 2010 Mar; 81(3):033706. PubMed ID: 20370184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal radiation scanning tunnelling microscopy.
    De Wilde Y; Formanek F; Carminati R; Gralak B; Lemoine PA; Joulain K; Mulet JP; Chen Y; Greffet JJ
    Nature; 2006 Dec; 444(7120):740-3. PubMed ID: 17151664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A passive long-wavelength infrared microscope with a highly sensitive phototransistor.
    Kajihara Y; Komiyama S; Nickels P; Ueda T
    Rev Sci Instrum; 2009 Jun; 80(6):063702. PubMed ID: 19566205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative thermal microscopy using thermoelectric probe in passive mode.
    Bontempi A; Thiery L; Teyssieux D; Briand D; Vairac P
    Rev Sci Instrum; 2013 Oct; 84(10):103703. PubMed ID: 24182115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scanning Near-Field Ellipsometry Microscopy: imaging nanomaterials with resolution below the diffraction limit.
    Tranchida D; Diaz J; Schön P; Schönherr H; Vancso GJ
    Nanoscale; 2011 Jan; 3(1):233-9. PubMed ID: 21042630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation.
    Donaldson PM; Kelley CS; Frogley MD; Filik J; Wehbe K; Cinque G
    Opt Express; 2016 Feb; 24(3):1852-64. PubMed ID: 26906764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared mass spectrometric imaging below the diffraction limit.
    Luxembourg SL; McDonnell LA; Mize TH; Heeren RM
    J Proteome Res; 2005; 4(3):671-3. PubMed ID: 15952713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally excited near-field radiation and far-field interference.
    Kajihara Y; Kosaka K; Komiyama S
    Opt Express; 2011 Apr; 19(8):7695-704. PubMed ID: 21503079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Millimeter-wave near-field imaging with bow-tie antennas.
    Omarouayache R; Payet P; Raoult J; Chusseau L
    Opt Express; 2015 May; 23(9):12144-51. PubMed ID: 25969302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological applications of synchrotron radiation infrared spectromicroscopy.
    Marcelli A; Cricenti A; Kwiatek WM; Petibois C
    Biotechnol Adv; 2012; 30(6):1390-404. PubMed ID: 22401782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators.
    Zhao J; Lu H; Deng J
    Bioelectromagnetics; 2015 Feb; 36(2):108-17. PubMed ID: 25644219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.
    Hillenbrand R
    Ultramicroscopy; 2004 Aug; 100(3-4):421-7. PubMed ID: 15231334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time outdoor concealed-object detection with passive millimeter wave imaging.
    Yeom S; Lee DS; Son JY; Jung MK; Jang Y; Jung SW; Lee SJ
    Opt Express; 2011 Jan; 19(3):2530-6. PubMed ID: 21369072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single ion as a nanoscopic probe of an optical field.
    Guthöhrlein GR; Keller M; Hayasaka K; Lange W; Walther H
    Nature; 2001 Nov; 414(6859):49-51. PubMed ID: 11689937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breaking the diffraction barrier: optical microscopy on a nanometric scale.
    Betzig E; Trautman JK; Harris TD; Weiner JS; Kostelak RL
    Science; 1991 Mar; 251(5000):1468-70. PubMed ID: 17779440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of speckle and target orientation requirements in millimeter-wave active imaging by modulated multimode mixing illumination.
    Patrick MA; Holt JA; Joye CD; De Lucia FC
    J Opt Soc Am A Opt Image Sci Vis; 2012 Dec; 29(12):2643-56. PubMed ID: 23455915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive 77 GHz millimeter-wave sensor based on optical upconversion.
    Wilson JP; Schuetz CA; Dillon TE; Yao P; Harrity CE; Prather DW
    Appl Opt; 2012 Jun; 51(18):4157-67. PubMed ID: 22722293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-field infrared imaging and spectroscopy of a thin film polystyrene/poly(ethyl acrylate) blend.
    Michaels CA; Gu X; Chase DB; Stranick SJ
    Appl Spectrosc; 2004 Mar; 58(3):257-63. PubMed ID: 15035704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband dielectric microwave microscopy on micron length scales.
    Tselev A; Anlage SM; Ma Z; Melngailis J
    Rev Sci Instrum; 2007 Apr; 78(4):044701. PubMed ID: 17477685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.