These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
728 related articles for article (PubMed ID: 23556914)
1. Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images. Wu S; Weinstein SP; Conant EF; Schnall MD; Kontos D Med Phys; 2013 Apr; 40(4):042301. PubMed ID: 23556914 [TBL] [Abstract][Full Text] [Related]
2. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method. Wu S; Weinstein SP; Conant EF; Kontos D Med Phys; 2013 Dec; 40(12):122302. PubMed ID: 24320533 [TBL] [Abstract][Full Text] [Related]
3. Fully automated segmentation of whole breast using dynamic programming in dynamic contrast enhanced MR images. Jiang L; Hu X; Xiao Q; Gu Y; Li Q Med Phys; 2017 Jun; 44(6):2400-2414. PubMed ID: 28375584 [TBL] [Abstract][Full Text] [Related]
4. Atlas-based probabilistic fibroglandular tissue segmentation in breast MRI. Wu S; Weinstein S; Kontos D Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):437-45. PubMed ID: 23286078 [TBL] [Abstract][Full Text] [Related]
5. Malignant lesion segmentation in contrast-enhanced breast MR images based on the marker-controlled watershed. Cui Y; Tan Y; Zhao B; Liberman L; Parbhu R; Kaplan J; Theodoulou M; Hudis C; Schwartz LH Med Phys; 2009 Oct; 36(10):4359-69. PubMed ID: 19928066 [TBL] [Abstract][Full Text] [Related]
6. A fully automatic algorithm for segmentation of the breasts in DCE-MR images. Giannini V; Vignati A; Morra L; Persano D; Brizzi D; Carbonaro L; Bert A; Sardanelli F; Regge D Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3146-9. PubMed ID: 21096592 [TBL] [Abstract][Full Text] [Related]
7. Multistage processing procedure for 4D breast MRI segmentation. Qi W; Hui D; Guang-zhi W Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3036-9. PubMed ID: 19163346 [TBL] [Abstract][Full Text] [Related]
8. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline. Gao S; van 't Klooster R; Brandts A; Roes SD; Alizadeh Dehnavi R; de Roos A; Westenberg JJ; van der Geest RJ J Magn Reson Imaging; 2017 Jan; 45(1):215-228. PubMed ID: 27251901 [TBL] [Abstract][Full Text] [Related]
9. A magnetic resonance spectroscopy driven initialization scheme for active shape model based prostate segmentation. Toth R; Tiwari P; Rosen M; Reed G; Kurhanewicz J; Kalyanpur A; Pungavkar S; Madabhushi A Med Image Anal; 2011 Apr; 15(2):214-25. PubMed ID: 21195016 [TBL] [Abstract][Full Text] [Related]
10. Automated breast segmentation of fat and water MR images using dynamic programming. Rosado-Toro JA; Barr T; Galons JP; Marron MT; Stopeck A; Thomson C; Thompson P; Carroll D; Wolf E; Altbach MI; Rodríguez JJ Acad Radiol; 2015 Feb; 22(2):139-48. PubMed ID: 25572926 [TBL] [Abstract][Full Text] [Related]
11. Integrated four dimensional registration and segmentation of dynamic renal MR images. Song T; Lee VS; Rusinek H; Wong S; Laine AF Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):758-65. PubMed ID: 17354841 [TBL] [Abstract][Full Text] [Related]
12. Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer's disease. Chupin M; Mukuna-Bantumbakulu AR; Hasboun D; Bardinet E; Baillet S; Kinkingnéhun S; Lemieux L; Dubois B; Garnero L Neuroimage; 2007 Feb; 34(3):996-1019. PubMed ID: 17178234 [TBL] [Abstract][Full Text] [Related]
13. Localized-atlas-based segmentation of breast MRI in a decision-making framework. Fooladivanda A; Shokouhi SB; Ahmadinejad N Australas Phys Eng Sci Med; 2017 Mar; 40(1):69-84. PubMed ID: 28116639 [TBL] [Abstract][Full Text] [Related]
14. Chest wall segmentation in automated 3D breast ultrasound scans. Tan T; Platel B; Mann RM; Huisman H; Karssemeijer N Med Image Anal; 2013 Dec; 17(8):1273-81. PubMed ID: 23273891 [TBL] [Abstract][Full Text] [Related]
15. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663 [TBL] [Abstract][Full Text] [Related]
16. Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images. Huo L; Hu X; Xiao Q; Gu Y; Chu X; Jiang L Magn Reson Imaging; 2021 Oct; 82():31-41. PubMed ID: 34147598 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous segmentation and registration of contrast-enhanced breast MRI. Xiaohua C; Brady M; Lo JL; Moore N Inf Process Med Imaging; 2005; 19():126-37. PubMed ID: 17354690 [TBL] [Abstract][Full Text] [Related]
18. Knowledge-based and deep learning-based automated chest wall segmentation in magnetic resonance images of extremely dense breasts. Verburg E; Wolterink JM; de Waard SN; Išgum I; van Gils CH; Veldhuis WB; Gilhuijs KGA Med Phys; 2019 Oct; 46(10):4405-4416. PubMed ID: 31274194 [TBL] [Abstract][Full Text] [Related]
19. Estimation of breast density: an adaptive moment preserving method for segmentation of fibroglandular tissue in breast magnetic resonance images. Wei CH; Li Y; Huang PJ; Gwo CY; Harms SE Eur J Radiol; 2012 Apr; 81(4):e618-24. PubMed ID: 22266417 [TBL] [Abstract][Full Text] [Related]
20. Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches. Le Troter A; Fouré A; Guye M; Confort-Gouny S; Mattei JP; Gondin J; Salort-Campana E; Bendahan D MAGMA; 2016 Apr; 29(2):245-57. PubMed ID: 26983429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]