These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 23556962)
1. Harnessing quantum transport by transient chaos. Yang R; Huang L; Lai YC; Grebogi C; Pecora LM Chaos; 2013 Mar; 23(1):013125. PubMed ID: 23556962 [TBL] [Abstract][Full Text] [Related]
2. Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics. Wang GL; Ying L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052908. PubMed ID: 23767599 [TBL] [Abstract][Full Text] [Related]
3. Conductance fluctuations in chaotic bilayer graphene quantum dots. Bao R; Huang L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012918. PubMed ID: 26274258 [TBL] [Abstract][Full Text] [Related]
4. Theory of chaos regularization of tunneling in chaotic quantum dots. Lee MJ; Antonsen TM; Ott E; Pecora LM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056212. PubMed ID: 23214862 [TBL] [Abstract][Full Text] [Related]
5. Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots. Huang L; Yang R; Lai YC; Ferry DK J Phys Condens Matter; 2013 Feb; 25(8):085502. PubMed ID: 23343960 [TBL] [Abstract][Full Text] [Related]
6. Recovery of chaotic tunneling due to destruction of dynamical localization by external noise. Ishikawa A; Tanaka A; Shudo A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046204. PubMed ID: 19905412 [TBL] [Abstract][Full Text] [Related]
7. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system. Wang R; Gao JY Chaos; 2005 Sep; 15(3):33110. PubMed ID: 16252984 [TBL] [Abstract][Full Text] [Related]
8. Unstable periodic orbits and noise in chaos computing. Kia B; Dari A; Ditto WL; Spano ML Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394 [TBL] [Abstract][Full Text] [Related]
9. Observing chaos for quantum-dot microlasers with external feedback. Albert F; Hopfmann C; Reitzenstein S; Schneider C; Höfling S; Worschech L; Kamp M; Kinzel W; Forchel A; Kanter I Nat Commun; 2011 Jun; 2():366. PubMed ID: 21694714 [TBL] [Abstract][Full Text] [Related]
10. Multiple period-doubling bifurcation route to chaos in periodically pulsed Murali-Lakshmanan-Chua circuit-controlling and synchronization of chaos. Parthasarathy S; Manikandakumar K Chaos; 2007 Dec; 17(4):043120. PubMed ID: 18163784 [TBL] [Abstract][Full Text] [Related]
11. Chaos computing in terms of periodic orbits. Kia B; Spano ML; Ditto WL Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036207. PubMed ID: 22060475 [TBL] [Abstract][Full Text] [Related]
12. Perturbations and chaos in quantum maps. Bullo DE; Wisniacki DA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026206. PubMed ID: 23005844 [TBL] [Abstract][Full Text] [Related]
13. Quantum-classical mechanics as an alternative to quantum mechanics in molecular and chemical physics. Egorov VV Heliyon; 2019 Dec; 5(12):e02579. PubMed ID: 31872096 [TBL] [Abstract][Full Text] [Related]
15. Is there chaos in the brain? II. Experimental evidence and related models. Korn H; Faure P C R Biol; 2003 Sep; 326(9):787-840. PubMed ID: 14694754 [TBL] [Abstract][Full Text] [Related]
16. Conductance stability in chaotic and integrable quantum dots with random impurities. Wang G; Ying L; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022901. PubMed ID: 26382470 [TBL] [Abstract][Full Text] [Related]
17. Control of chaos in nonlinear systems with time-periodic coefficients. Sinha SC; Dávid A Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2417-32. PubMed ID: 16893795 [TBL] [Abstract][Full Text] [Related]
18. Quantum chaos meets coherent control. Gong J; Brumer P Annu Rev Phys Chem; 2005; 56():1-23. PubMed ID: 15796694 [TBL] [Abstract][Full Text] [Related]
19. Theoretical models for chronotherapy: periodic perturbations in funnel chaos type. Betancourt-Mar JA; Nieto-Villar JM Math Biosci Eng; 2007 Apr; 4(2):177-86. PubMed ID: 17658922 [TBL] [Abstract][Full Text] [Related]
20. Wave transport and statistical properties of an open non-Hermitian quantum dot with parity-time symmetry. Wahlstrand B; Yakimenko II; Berggren KF Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062910. PubMed ID: 25019854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]