BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

781 related articles for article (PubMed ID: 23557541)

  • 1. A density-functional theory-based neural network potential for water clusters including van der Waals corrections.
    Morawietz T; Behler J
    J Phys Chem A; 2013 Aug; 117(32):7356-66. PubMed ID: 23557541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density, structure, and dynamics of water: the effect of van der Waals interactions.
    Wang J; Román-Pérez G; Soler JM; Artacho E; Fernández-Serra MV
    J Chem Phys; 2011 Jan; 134(2):024516. PubMed ID: 21241129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Van der Waals effects in ab initio water at ambient and supercritical conditions.
    Jonchiere R; Seitsonen AP; Ferlat G; Saitta AM; Vuilleumier R
    J Chem Phys; 2011 Oct; 135(15):154503. PubMed ID: 22029320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of van der Waals interactions in liquid water.
    Lin IC; Seitsonen AP; Coutinho-Neto MD; Tavernelli I; Rothlisberger U
    J Phys Chem B; 2009 Jan; 113(4):1127-31. PubMed ID: 19123911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking van der Waals density functionals with experimental data: potential-energy curves for H2 molecules on Cu(111), (100) and (110) surfaces.
    Lee K; Berland K; Yoon M; Andersson S; Schröder E; Hyldgaard P; Lundqvist BI
    J Phys Condens Matter; 2012 Oct; 24(42):424213. PubMed ID: 23032859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.
    Liu Y; Zhao J; Li F; Chen Z
    J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimizing density functional failures for non-covalent interactions beyond van der Waals complexes.
    Corminboeuf C
    Acc Chem Res; 2014 Nov; 47(11):3217-24. PubMed ID: 24655016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved description of soft layered materials with van der Waals density functional theory.
    Graziano G; Klimeš J; Fernandez-Alonso F; Michaelides A
    J Phys Condens Matter; 2012 Oct; 24(42):424216. PubMed ID: 23032994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are we van der Waals ready?
    Björkman T; Gulans A; Krasheninnikov AV; Nieminen RM
    J Phys Condens Matter; 2012 Oct; 24(42):424218. PubMed ID: 23032078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and stability of weakly chemisorbed ethene adsorbed on low-index Cu surfaces: performance of density functionals with van der Waals interactions.
    Hanke F; Dyer MS; Björk J; Persson M
    J Phys Condens Matter; 2012 Oct; 24(42):424217. PubMed ID: 23031831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach.
    Sun YY; Kim YH; Lee K; Zhang SB
    J Chem Phys; 2008 Oct; 129(15):154102. PubMed ID: 19045171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate description of van der Waals complexes by density functional theory including empirical corrections.
    Grimme S
    J Comput Chem; 2004 Sep; 25(12):1463-73. PubMed ID: 15224390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. II. The water hexamer and van der Waals interactions.
    Santra B; Michaelides A; Fuchs M; Tkatchenko A; Filippi C; Scheffler M
    J Chem Phys; 2008 Nov; 129(19):194111. PubMed ID: 19026049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials.
    Kondati Natarajan S; Morawietz T; Behler J
    Phys Chem Chem Phys; 2015 Apr; 17(13):8356-71. PubMed ID: 25436835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physisorption of nucleobases on graphene: a comparative van der Waals study.
    Le D; Kara A; Schröder E; Hyldgaard P; Rahman TS
    J Phys Condens Matter; 2012 Oct; 24(42):424210. PubMed ID: 23032709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and binding energies of the van der Waals complexes of Ar and N2 with phenol and its cation, studied by high level ab initio and density functional theory calculations.
    Vincent MA; Hillier IH; Morgado CA; Burton NA; Shan X
    J Chem Phys; 2008 Jan; 128(4):044313. PubMed ID: 18247955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GGA versus van der Waals density functional results for mixed gold/mercury molecules and pure Au and Hg cluster properties.
    Fernández EM; Balbás LC
    Phys Chem Chem Phys; 2011 Dec; 13(46):20863-70. PubMed ID: 22006277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges.
    Morawietz T; Sharma V; Behler J
    J Chem Phys; 2012 Feb; 136(6):064103. PubMed ID: 22360165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Six-dimensional potential energy surface for H2 at Ru(0001).
    Luppi M; Olsen RA; Baerends EJ
    Phys Chem Chem Phys; 2006 Feb; 8(6):688-96. PubMed ID: 16482308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.