These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23557995)

  • 1. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.
    Braunschweig J; Bosch J; Meckenstock RU
    N Biotechnol; 2013 Sep; 30(6):793-802. PubMed ID: 23557995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of geochemical properties and land-use types on the microbial reduction of Fe(III) in subtropical soils.
    Liu C; Wang Y; Li F; Chen M; Zhai G; Tao L; Liu C
    Environ Sci Process Impacts; 2014 Aug; 16(8):1938-47. PubMed ID: 24931535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron(III) reduction.
    Yu HY; Wang YK; Chen PC; Li FB; Chen MJ; Hu M; Ouyang X
    J Environ Manage; 2014 Jan; 132():42-8. PubMed ID: 24286925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides.
    Taillefert M; Beckler JS; Carey E; Burns JL; Fennessey CM; DiChristina TJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1760-7. PubMed ID: 17765315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil.
    Weiss JV; Emerson D; Megonigal JP
    FEMS Microbiol Ecol; 2004 Apr; 48(1):89-100. PubMed ID: 19712434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?
    Pédrot M; Le Boudec A; Davranche M; Dia A; Henin O
    J Colloid Interface Sci; 2011 Jul; 359(1):75-85. PubMed ID: 21482426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schlöppnerbrunnen fen-derived humic acids.
    Hädrich A; Taillefert M; Akob DM; Cooper RE; Litzba U; Wagner FE; Nietzsche S; Ciobota V; Rösch P; Popp J; Küsel K
    FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30874727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Oct; 46(20):11070-7. PubMed ID: 22970760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.
    Hall SJ; Silver WL
    Glob Chang Biol; 2013 Sep; 19(9):2804-13. PubMed ID: 23606589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of microbial iron oxide reduction on the transport of diffusible tracers and non-diffusible nanoparticles in soils.
    Liang X; Radosevich M; Löffler F; Schaeffer SM; Zhuang J
    Chemosphere; 2019 Apr; 220():391-402. PubMed ID: 30597359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The roles of natural organic matter in chemical and microbial reduction of ferric iron.
    Chen J; Gu B; Royer RA; Burgos WD
    Sci Total Environ; 2003 May; 307(1-3):167-78. PubMed ID: 12711432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic transformation of DDT related to iron(III) reduction and microbial community structure in paddy soils.
    Chen M; Cao F; Li F; Liu C; Tong H; Wu W; Hu M
    J Agric Food Chem; 2013 Mar; 61(9):2224-33. PubMed ID: 23402620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron and arsenic release from aquifer solids in response to biostimulation.
    McLean JE; Dupont RR; Sorensen DL
    J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment and isolation of ferric-iron- and humic-acid-reducing bacteria.
    Straub KL; Kappler A; Schink B
    Methods Enzymol; 2005; 397():58-77. PubMed ID: 16260285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].
    Si YB; Wang J
    Huan Jing Ke Xue; 2015 Sep; 36(9):3533-42. PubMed ID: 26717720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-current as an indicator for biogenic Fe(II) generation driven by dissimilatory iron reducing bacteria.
    Feng C; Yue X; Li F; Wei C
    Biosens Bioelectron; 2013 Jan; 39(1):51-6. PubMed ID: 22794934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.
    Langley S; Igric P; Takahashi Y; Sakai Y; Fortin D; Hannington MD; Schwarz-Schampera U
    Geobiology; 2009 Jan; 7(1):35-49. PubMed ID: 19200145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-Nitrophenol reduction promoted by S. putrefaciens 200 and biogenic ferrous iron: the role of different size-fractions of dissolved organic matter.
    Zhu Z; Tao L; Li F
    J Hazard Mater; 2014 Aug; 279():436-43. PubMed ID: 25093552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.