These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23557995)

  • 41. THE WIDESPREAD OF Fe(III)-REDUCING BACTERIA IN NATURAL ECOSYSTEMS OF ECUADOR.
    Tashyrev OB; Govorukha VM
    Mikrobiol Z; 2015; 77(4):62-8. PubMed ID: 26422925
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Subsurface interactions of Fe(II) with humic acid or landfill leachate do not control subsequent iron(III) (hydr)oxide production at the surface.
    Jackson A; Gaffney JW; Boult S
    Environ Sci Technol; 2012 Jul; 46(14):7543-50. PubMed ID: 22712619
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of water saturation level on arsenic and metal mobility in the Fe-amended soil.
    Kumpiene J; Ragnvaldsson D; Lövgren L; Tesfalidet S; Gustavsson B; Lättström A; Leffler P; Maurice C
    Chemosphere; 2009 Jan; 74(2):206-15. PubMed ID: 18990425
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil.
    Vítková M; Komárek M; Tejnecký V; Šillerová H
    J Hazard Mater; 2015 Aug; 293():7-14. PubMed ID: 25814334
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper in synthesized Fe(III) minerals and Fe-rich soils.
    Hu C; Zhang Y; Zhang L; Luo W
    J Microbiol Biotechnol; 2014 Apr; 24(4):534-44. PubMed ID: 24448165
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances.
    Zhou S; Xu J; Yang G; Zhuang L
    FEMS Microbiol Ecol; 2014 Apr; 88(1):107-20. PubMed ID: 24372096
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of NOM on oxidative reactivity of manganese dioxide in binary oxide mixtures with goethite or hematite.
    Zhang H; Taujale S; Huang J; Lee GJ
    Langmuir; 2015 Mar; 31(9):2790-9. PubMed ID: 25652230
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications.
    Latif A; Sheng D; Sun K; Si Y; Azeem M; Abbas A; Bilal M
    Environ Pollut; 2020 Sep; 264():114728. PubMed ID: 32408081
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of pO
    Chen C; Meile C; Wilmoth J; Barcellos D; Thompson A
    Environ Sci Technol; 2018 Jul; 52(14):7709-7719. PubMed ID: 29890827
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elucidating the role of electron shuttles in reductive transformations in anaerobic sediments.
    Zhang H; Weber EJ
    Environ Sci Technol; 2009 Feb; 43(4):1042-8. PubMed ID: 19320155
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Colloid mobilization during soil iron redox oscillations.
    Thompson A; Chadwick OA; Boman S; Chorover J
    Environ Sci Technol; 2006 Sep; 40(18):5743-9. PubMed ID: 17007135
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Blood meal-based compound. Good choice as iron fertilizer for organic farming.
    Yunta F; Di Foggia M; Bellido-Díaz V; Morales-Calderón M; Tessarin P; López-Rayo S; Tinti A; Kovács K; Klencsár Z; Fodor F; Rombolà AD
    J Agric Food Chem; 2013 May; 61(17):3995-4003. PubMed ID: 23565571
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Behaviour of (99)Tc in aqueous solutions in the presence of iron oxides and microorganisms.
    Druteikienė R; Lukšienė B; Pečiulytė D; Mažeika K; Gudelis A; Baltrūnas D
    Appl Radiat Isot; 2014 Jul; 89():85-94. PubMed ID: 24607533
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microbial depassivation of Fe(0) for contaminant removal under semi-aerobic conditions.
    Chen X; Song D; Xu J; Sun G; Xu M
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8595-8605. PubMed ID: 29018943
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nitrilotriacetate stimulation of anaerobic Fe(III) respiration by mobilization of humic materials in soil.
    Luu Y; Ramsay BA; Ramsay JA
    Appl Environ Microbiol; 2003 Sep; 69(9):5255-62. PubMed ID: 12957911
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Facet-dependent Fe(II) redox chemistry on iron oxide for organic pollutant transformation and mechanisms.
    Hao T; Huang Y; Li F; Wu Y; Fang L
    Water Res; 2022 Jul; 219():118587. PubMed ID: 35605391
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Review of the Evidence from Epidemiology, Toxicology, and Lung Bioavailability on the Carcinogenicity of Inhaled Iron Oxide Particulates.
    Pease C; Rücker T; Birk T
    Chem Res Toxicol; 2016 Mar; 29(3):237-54. PubMed ID: 26863929
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polarity and molecular weight of compost-derived humic acid affect Fe(III) oxides reduction.
    Yuan Y; He X; Xi B; Li D; Gao R; Tan W; Zhang H; Yang C; Zhao X
    Chemosphere; 2018 Oct; 208():77-83. PubMed ID: 29860147
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ligand Effects on Biotic and Abiotic Fe(II) Oxidation by the Microaerophile
    Zhou N; Luther GW; Chan CS
    Environ Sci Technol; 2021 Jul; 55(13):9362-9371. PubMed ID: 34110796
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sustaining reactivity of Fe(0) for nitrate reduction via electron transfer between dissolved Fe(2+) and surface iron oxides.
    Han L; yang L; Wang H; Hu X; Chen Z; Hu C
    J Hazard Mater; 2016 May; 308():208-15. PubMed ID: 26835898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.