These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 2355802)

  • 1. Age differences in responsiveness of brainstem chemosensitive neurons to extracellular pH changes.
    Whittaker JA; Trouth CO; Pan Y; Millis RM; Bernard DG
    Life Sci; 1990; 46(23):1699-705. PubMed ID: 2355802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurophysiological studies on superficial medullary chemosensitive area for respiration.
    Trouth CO; Patrickson JW; Holloway JA; Wright LE
    Brain Res; 1982 Aug; 246(1):47-56. PubMed ID: 7127089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly H+-sensitive neurons in the caudal ventrolateral medulla of the rat.
    Ribas-Salgueiro JL; Gaytán SP; Crego R; Pásaro R; Ribas J
    J Physiol; 2003 May; 549(Pt 1):181-94. PubMed ID: 12665611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the centrally-evoked visceral alerting/defence response by changes in CSF pH at the ventral surface of the medulla oblongata and by systemic hypercapnia.
    Marshall JM
    Pflugers Arch; 1986 Jul; 407(1):46-54. PubMed ID: 3737381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO2-sensitivity of GABAergic neurons in the ventral medullary surface of GAD67-GFP knock-in neonatal mice.
    Kuribayashi J; Sakuraba S; Hosokawa Y; Hatori E; Tsujita M; Takeda J; Yanagawa Y; Obata K; Kuwana S
    Adv Exp Med Biol; 2008; 605():338-42. PubMed ID: 18085296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible locations of pH-dependent central chemoreceptors: intramedullary regions with acidic shift of extracellular fluid pH during hypercapnia.
    Arita H; Ichikawa K; Kuwana S; Kogo N
    Brain Res; 1989 Apr; 485(2):285-93. PubMed ID: 2720414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Neuronal activity in chemosensitive regions of the medulla oblongata as a function of the hydrogen ion concentration of the cerebrospinal fluid].
    Shimada K; Trouth CO; Loeschcke HH
    Pflugers Arch; 1969; 312(1):R55. PubMed ID: 5390267
    [No Abstract]   [Full Text] [Related]  

  • 8. Microenvironment of respiratory neurons in the in vitro brainstem-spinal cord of neonatal rats.
    Brockhaus J; Ballanyi K; Smith JC; Richter DW
    J Physiol; 1993 Mar; 462():421-45. PubMed ID: 8331589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurons sensitive to pH in slices of the rat ventral medulla oblongata.
    Jarolimek W; Misgeld U; Lux HD
    Pflugers Arch; 1990 May; 416(3):247-53. PubMed ID: 2166272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ECF pH dynamics within the ventrolateral medulla: a microelectrode study.
    Ichikawa K; Kuwana S; Arita H
    J Appl Physiol (1985); 1989 Jul; 67(1):193-8. PubMed ID: 2503491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of extracellular calcium and magnesium on central respiratory control in the brainstem-spinal cord of neonatal rat.
    Kuwana S; Okada Y; Natsui T
    Brain Res; 1998 Mar; 786(1-2):194-204. PubMed ID: 9555011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pH of brain extracellular fluid in the cat.
    Cragg P; Patterson L; Purves MJ
    J Physiol; 1977 Oct; 272(1):137-66. PubMed ID: 22741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholinergic-opioid interactions at brainstem respiratory chemosensitive areas in cats.
    Trouth CO; Millis RM; Bernard DG; Pan Y; Whittaker JA; Archer PW
    Neurotoxicology; 1993; 14(4):459-67. PubMed ID: 8164890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ventrolateral neurons of medullary organotypic cultures: intracellular pH regulation and bioelectric activity.
    Wiemann M; Bingmann D
    Respir Physiol; 2001 Dec; 129(1-2):57-70. PubMed ID: 11738646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maturation of kitten ventral medullary surface activity during pressor challenges.
    Gozal D; Dong XW; Rector DM; Harper RM
    Dev Neurosci; 1995; 17(4):236-45. PubMed ID: 8575343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naloxone application to the ventrolateral medulla enhances the respiratory response to inspired carbon dioxide.
    Trouth CO; Bada FJ; Pan Y; Holloway JA; Millis RM; Bernard DG
    Life Sci; 1991; 49(3):193-200. PubMed ID: 1905772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efferent phrenic nerve and respiratory neuron activities in the developing kitten: spontaneous discharges and hypoxic responses.
    Sica AL; Gandhi MR
    Brain Res; 1990 Aug; 524(2):254-62. PubMed ID: 2292008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular pH response to hypercapnia in neurons from chemosensitive areas of the medulla.
    Ritucci NA; Dean JB; Putnam RW
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R433-41. PubMed ID: 9249582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ventral medullary extracellular fluid pH and blood flow during hypoxia.
    Nolan WF; Houck PC; Thomas JL; Davies DG
    Am J Physiol; 1982 Mar; 242(3):R195-8. PubMed ID: 7065213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular pH regulation in neurons from chemosensitive and nonchemosensitive areas of the medulla.
    Ritucci NA; Chambers-Kersh L; Dean JB; Putnam RW
    Am J Physiol; 1998 Oct; 275(4):R1152-63. PubMed ID: 9756546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.