BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23558138)

  • 1. Cellular uptake of Clostridium difficile TcdA and truncated TcdA lacking the receptor binding domain.
    Gerhard R; Frenzel E; Goy S; Olling A
    J Med Microbiol; 2013 Sep; 62(Pt 9):1414-1422. PubMed ID: 23558138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The repetitive oligopeptide sequences modulate cytopathic potency but are not crucial for cellular uptake of Clostridium difficile toxin A.
    Olling A; Goy S; Hoffmann F; Tatge H; Just I; Gerhard R
    PLoS One; 2011 Mar; 6(3):e17623. PubMed ID: 21445253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clostridium difficile Toxin A Undergoes Clathrin-Independent, PACSIN2-Dependent Endocytosis.
    Chandrasekaran R; Kenworthy AK; Lacy DB
    PLoS Pathog; 2016 Dec; 12(12):e1006070. PubMed ID: 27942025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for dual receptor-binding sites in Clostridium difficile toxin A.
    Lambert GS; Baldwin MR
    FEBS Lett; 2016 Dec; 590(24):4550-4563. PubMed ID: 27861794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Masking autoprocessing of Clostridium difficile toxin A by the C-terminus combined repetitive oligo peptides.
    Zhang Y; Hamza T; Gao S; Feng H
    Biochem Biophys Res Commun; 2015 Apr; 459(2):259-263. PubMed ID: 25725153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The combined repetitive oligopeptides of clostridium difficile toxin A counteract premature cleavage of the glucosyl-transferase domain by stabilizing protein conformation.
    Olling A; Hüls C; Goy S; Müller M; Krooss S; Rudolf I; Tatge H; Gerhard R
    Toxins (Basel); 2014 Jul; 6(7):2162-76. PubMed ID: 25054784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a neutralizing antibody helps identify structural features critical for binding of
    Kroh HK; Chandrasekaran R; Rosenthal K; Woods R; Jin X; Ohi MD; Nyborg AC; Rainey GJ; Warrener P; Spiller BW; Lacy DB
    J Biol Chem; 2017 Sep; 292(35):14401-14412. PubMed ID: 28705932
    [No Abstract]   [Full Text] [Related]  

  • 8. Molecular cloning, overexpression in Escherichia coli, and purification of 6x his-tagged C-terminal domain of Clostridium difficile toxins A and B.
    Letourneur O; Ottone S; Delauzun V; Bastide MC; Foussadier A
    Protein Expr Purif; 2003 Oct; 31(2):276-85. PubMed ID: 14550648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High temporal resolution of glucosyltransferase dependent and independent effects of Clostridium difficile toxins across multiple cell types.
    D'Auria KM; Bloom MJ; Reyes Y; Gray MC; van Opstal EJ; Papin JA; Hewlett EL
    BMC Microbiol; 2015 Feb; 15(1):7. PubMed ID: 25648517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward
    Ruhe F; Olling A; Abromeit R; Rataj D; Grieschat M; Zeug A; Gerhard R; Alekov A
    Front Cell Infect Microbiol; 2017; 7():67. PubMed ID: 28348980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis.
    Papatheodorou P; Zamboglou C; Genisyuerek S; Guttenberg G; Aktories K
    PLoS One; 2010 May; 5(5):e10673. PubMed ID: 20498856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene.
    Olling A; Seehase S; Minton NP; Tatge H; Schröter S; Kohlscheen S; Pich A; Just I; Gerhard R
    Microb Pathog; 2012 Jan; 52(1):92-100. PubMed ID: 22107906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfated glycosaminoglycans and low-density lipoprotein receptor contribute to Clostridium difficile toxin A entry into cells.
    Tao L; Tian S; Zhang J; Liu Z; Robinson-McCarthy L; Miyashita SI; Breault DT; Gerhard R; Oottamasathien S; Whelan SPJ; Dong M
    Nat Microbiol; 2019 Oct; 4(10):1760-1769. PubMed ID: 31160825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium.
    Yang G; Zhou B; Wang J; He X; Sun X; Nie W; Tzipori S; Feng H
    BMC Microbiol; 2008 Nov; 8():192. PubMed ID: 18990232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lectin Activity of the TcdA and TcdB Toxins of Clostridium difficile.
    Hartley-Tassell LE; Awad MM; Seib KL; Scarselli M; Savino S; Tiralongo J; Lyras D; Day CJ; Jennings MP
    Infect Immun; 2019 Mar; 87(3):. PubMed ID: 30530621
    [No Abstract]   [Full Text] [Related]  

  • 16. Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile.
    Dingle T; Wee S; Mulvey GL; Greco A; Kitova EN; Sun J; Lin S; Klassen JS; Palcic MM; Ng KK; Armstrong GD
    Glycobiology; 2008 Sep; 18(9):698-706. PubMed ID: 18509107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clostridium difficile Toxin Biology.
    Aktories K; Schwan C; Jank T
    Annu Rev Microbiol; 2017 Sep; 71():281-307. PubMed ID: 28657883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C-terminal ligand-binding domain of Clostridium difficile toxin A (TcdA) abrogates TcdA-specific binding to cells and prevents mouse lethality.
    Sauerborn M; Leukel P; von Eichel-Streiber C
    FEMS Microbiol Lett; 1997 Oct; 155(1):45-54. PubMed ID: 9345763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibody-enhanced, Fc gamma receptor-mediated endocytosis of Clostridium difficile toxin A.
    He X; Sun X; Wang J; Wang X; Zhang Q; Tzipori S; Feng H
    Infect Immun; 2009 Jun; 77(6):2294-303. PubMed ID: 19307220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of an Essential Region for Translocation of Clostridium difficile Toxin B.
    Chen S; Wang H; Gu H; Sun C; Li S; Feng H; Wang J
    Toxins (Basel); 2016 Aug; 8(8):. PubMed ID: 27537911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.