These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23558168)

  • 21. FABLE: A Semi-Supervised Prescription Information Extraction System.
    Tao C; Filannino M; Uzuner Ö
    AMIA Annu Symp Proc; 2018; 2018():1534-1543. PubMed ID: 30815199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting abbreviations in discharge summaries using machine learning methods.
    Wu Y; Rosenbloom ST; Denny JC; Miller RA; Mani S; Giuse DA; Xu H
    AMIA Annu Symp Proc; 2011; 2011():1541-9. PubMed ID: 22195219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge.
    Patrick J; Li M
    J Am Med Inform Assoc; 2010; 17(5):524-7. PubMed ID: 20819856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards generating a patient's timeline: extracting temporal relationships from clinical notes.
    Nikfarjam A; Emadzadeh E; Gonzalez G
    J Biomed Inform; 2013 Dec; 46 Suppl(0):S40-S47. PubMed ID: 24212118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feature engineering combined with machine learning and rule-based methods for structured information extraction from narrative clinical discharge summaries.
    Xu Y; Hong K; Tsujii J; Chang EI
    J Am Med Inform Assoc; 2012; 19(5):824-32. PubMed ID: 22586067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
    Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME
    J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal reasoning over clinical text: the state of the art.
    Sun W; Rumshisky A; Uzuner O
    J Am Med Inform Assoc; 2013; 20(5):814-9. PubMed ID: 23676245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recognizing obesity and comorbidities in sparse data.
    Uzuner O
    J Am Med Inform Assoc; 2009; 16(4):561-70. PubMed ID: 19390096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A customized method for information extraction from unstructured text data in the electronic medical records].
    Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Programming techniques for improving rule readability for rule-based information extraction natural language processing pipelines of unstructured and semi-structured medical texts.
    Ladas N; Borchert F; Franz S; Rehberg A; Strauch N; Sommer KK; Marschollek M; Gietzelt M
    Health Informatics J; 2023; 29(2):14604582231164696. PubMed ID: 37068028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TagLine: Information Extraction for Semi-Structured Text in Medical Progress Notes.
    Finch DK; McCart JA; Luther SL
    AMIA Annu Symp Proc; 2014; 2014():534-43. PubMed ID: 25954358
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of semantic features to classify patient smoking status.
    McCormick PJ; Elhadad N; Stetson PD
    AMIA Annu Symp Proc; 2008 Nov; 2008():450-4. PubMed ID: 18998969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning to identify treatment relations in clinical text.
    Bejan CA; Denny JC
    AMIA Annu Symp Proc; 2014; 2014():282-8. PubMed ID: 25954330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 2018 n2c2 shared task on adverse drug events and medication extraction in electronic health records.
    Henry S; Buchan K; Filannino M; Stubbs A; Uzuner O
    J Am Med Inform Assoc; 2020 Jan; 27(1):3-12. PubMed ID: 31584655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Congestive heart failure information extraction framework for automated treatment performance measures assessment.
    Meystre SM; Kim Y; Gobbel GT; Matheny ME; Redd A; Bray BE; Garvin JH
    J Am Med Inform Assoc; 2017 Apr; 24(e1):e40-e46. PubMed ID: 27413122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features.
    Tang B; Cao H; Wu Y; Jiang M; Xu H
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S1. PubMed ID: 23566040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A text mining approach to the prediction of disease status from clinical discharge summaries.
    Yang H; Spasic I; Keane JA; Nenadic G
    J Am Med Inform Assoc; 2009; 16(4):596-600. PubMed ID: 19390098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating the state of the art in coreference resolution for electronic medical records.
    Uzuner O; Bodnari A; Shen S; Forbush T; Pestian J; South BR
    J Am Med Inform Assoc; 2012; 19(5):786-91. PubMed ID: 22366294
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extracting structured medication event information from discharge summaries.
    Gold S; Elhadad N; Zhu X; Cimino JJ; Hripcsak G
    AMIA Annu Symp Proc; 2008 Nov; 2008():237-41. PubMed ID: 18999147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Linguistic approach for identification of medication names and related information in clinical narratives.
    Hamon T; Grabar N
    J Am Med Inform Assoc; 2010; 17(5):549-54. PubMed ID: 20819862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.