BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23558188)

  • 1. Porosity of Lactococcus lactis subsp. lactis LD61 colonies immobilised in model cheese.
    Floury J; Jeanson S; Madec MN; Lortal S
    Int J Food Microbiol; 2013 May; 163(2-3):64-70. PubMed ID: 23558188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion of solutes inside bacterial colonies immobilized in model cheese depends on their physicochemical properties: a time-lapse microscopy study.
    Floury J; El Mourdi I; Silva JV; Lortal S; Thierry A; Jeanson S
    Front Microbiol; 2015; 6():366. PubMed ID: 25983724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial Distribution of Lactococcus lactis Colonies Modulates the Production of Major Metabolites during the Ripening of a Model Cheese.
    Le Boucher C; Gagnaire V; Briard-Bion V; Jardin J; Maillard MB; Dervilly-Pinel G; Le Bizec B; Lortal S; Jeanson S; Thierry A
    Appl Environ Microbiol; 2016 Jan; 82(1):202-10. PubMed ID: 26497453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate of Lactococcus lactis starter cultures during late ripening in cheese models.
    Ruggirello M; Cocolin L; Dolci P
    Food Microbiol; 2016 Oct; 59():112-8. PubMed ID: 27375251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altering renneting pH changes microstructure, cell distribution, and lysis of Lactococcus lactis AM2 in cheese made from ultrafiltered milk.
    Hannon JA; Lopez C; Madec MN; Lortal S
    J Dairy Sci; 2006 Mar; 89(3):812-23. PubMed ID: 16507673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial distribution of bacterial colonies in a model cheese.
    Jeanson S; Chadœuf J; Madec MN; Aly S; Floury J; Brocklehurst TF; Lortal S
    Appl Environ Microbiol; 2011 Feb; 77(4):1493-500. PubMed ID: 21169438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport phenomena in a model cheese: the influence of the charge and shape of solutes on diffusion.
    Silva JV; Peixoto PD; Lortal S; Floury J
    J Dairy Sci; 2013 Oct; 96(10):6186-98. PubMed ID: 23958000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Lactococcus lactis during advanced ripening stages of model cheeses characterized by GC-MS.
    Ruggirello M; Giordano M; Bertolino M; Ferrocino I; Cocolin L; Dolci P
    Food Microbiol; 2018 Sep; 74():132-142. PubMed ID: 29706329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of genomic characteristics and carbohydrates' metabolic activity of Lactococcus lactis subsp. lactis during ripening of a Swiss-type cheese.
    Mataragas M
    Food Microbiol; 2020 May; 87():103392. PubMed ID: 31948633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of starter and nonstarter on the formation of biogenic amine in goat cheese during ripening.
    Novella-Rodríguez S; Veciana-Nogués MT; Roig-Sagués AX; Trujillo-Mesa AJ; Vidal-Carou MC
    J Dairy Sci; 2002 Oct; 85(10):2471-8. PubMed ID: 12416798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation.
    Desfossés-Foucault É; LaPointe G; Roy D
    Int J Food Microbiol; 2014 May; 178():76-86. PubMed ID: 24674930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteolytic enzyme activities in Cheddar cheese juice made using lactococcal starters of differing autolytic properties.
    Sheehan A; Cuinn GO; Fitzgerald RJ; Wilkinson MG
    J Appl Microbiol; 2006 Apr; 100(4):893-901. PubMed ID: 16553747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of active prophages in industrial Lactococcus lactis strains in the presence of heat, acid, osmotic, oxidative and antibiotic stressors.
    Ho CH; Stanton-Cook M; Beatson SA; Bansal N; Turner MS
    Int J Food Microbiol; 2016 Mar; 220():26-32. PubMed ID: 26773254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of antifungal substance by Lactococcus lactis subsp. lactis CHD-28.3.
    Roy U; Batish VK; Grover S; Neelakantan S
    Int J Food Microbiol; 1996 Sep; 32(1-2):27-34. PubMed ID: 8880325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial diversity and succession during the manufacture and ripening of traditional, Spanish, blue-veined Cabrales cheese, as determined by PCR-DGGE.
    Flórez AB; Mayo B
    Int J Food Microbiol; 2006 Jul; 110(2):165-71. PubMed ID: 16806553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and viability of Lactococcus lactis throughout cheese ripening.
    Ruggirello M; Dolci P; Cocolin L
    PLoS One; 2014; 9(12):e114280. PubMed ID: 25503474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk.
    Alegría A; Delgado S; Roces C; López B; Mayo B
    Int J Food Microbiol; 2010 Sep; 143(1-2):61-6. PubMed ID: 20708289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged Lacticin 3147 producing Lactococcus lactis strain.
    Fernández de Palencia P; de la Plaza M; Mohedano ML; Martínez-Cuesta MC; Requena T; López P; Peláez C
    Int J Food Microbiol; 2004 Jun; 93(3):335-47. PubMed ID: 15163590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of free and microencapsulated Lactococcus lactis on composition and rheological properties of Manchego-type cheeses during ripening.
    Salazar-Montoya JA; González-Cuello R; Flores-Girón E; Ramos-Ramírez EG
    Food Res Int; 2018 Mar; 105():59-64. PubMed ID: 29433252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the volatile compound profile of cheese, by a Lactococcus lactis strain expressing a mutant oligopeptide binding protein.
    Picon A; Fernández-García E; Gaya P; Nuñez M
    J Dairy Res; 2008 Feb; 75(1):30-6. PubMed ID: 18226303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.