These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 23558341)

  • 1. The branch-site test of positive selection is surprisingly robust but lacks power under synonymous substitution saturation and variation in GC.
    Gharib WH; Robinson-Rechavi M
    Mol Biol Evol; 2013 Jul; 30(7):1675-86. PubMed ID: 23558341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical properties of the branch-site test of positive selection.
    Yang Z; dos Reis M
    Mol Biol Evol; 2011 Mar; 28(3):1217-28. PubMed ID: 21087944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved inference of site-specific positive selection under a generalized parametric codon model when there are multinucleotide mutations and multiple nonsynonymous rates.
    Dunn KA; Kenney T; Gu H; Bielawski JP
    BMC Evol Biol; 2019 Jan; 19(1):22. PubMed ID: 30642241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. False-positive results obtained from the branch-site test of positive selection.
    Suzuki Y
    Genes Genet Syst; 2008 Aug; 83(4):331-8. PubMed ID: 18931458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Not so different after all: a comparison of methods for detecting amino acid sites under selection.
    Kosakovsky Pond SL; Frost SD
    Mol Biol Evol; 2005 May; 22(5):1208-22. PubMed ID: 15703242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between selection and biased gene conversion in mammalian protein-coding sequence evolution revealed by a phylogenetic covariance analysis.
    Lartillot N
    Mol Biol Evol; 2013 Feb; 30(2):356-68. PubMed ID: 23024185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level.
    Zhang J; Nielsen R; Yang Z
    Mol Biol Evol; 2005 Dec; 22(12):2472-9. PubMed ID: 16107592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Codon Usage Selection Can Bias Estimation of the Fraction of Adaptive Amino Acid Fixations.
    Matsumoto T; John A; Baeza-Centurion P; Li B; Akashi H
    Mol Biol Evol; 2016 Jun; 33(6):1580-9. PubMed ID: 26873577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring natural selection operating on conservative and radical substitution at single amino acid sites.
    Suzuki Y
    Genes Genet Syst; 2007 Aug; 82(4):341-60. PubMed ID: 17895585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for detecting positive selection at single amino acid sites.
    Suzuki Y; Gojobori T
    Mol Biol Evol; 1999 Oct; 16(10):1315-28. PubMed ID: 10563013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-to-site variation of synonymous substitution rates.
    Pond SK; Muse SV
    Mol Biol Evol; 2005 Dec; 22(12):2375-85. PubMed ID: 16107593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites.
    Wong WS; Yang Z; Goldman N; Nielsen R
    Genetics; 2004 Oct; 168(2):1041-51. PubMed ID: 15514074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes.
    Yang Z; Swanson WJ
    Mol Biol Evol; 2002 Jan; 19(1):49-57. PubMed ID: 11752189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advantages of a mechanistic codon substitution model for evolutionary analysis of protein-coding sequences.
    Miyazawa S
    PLoS One; 2011; 6(12):e28892. PubMed ID: 22220197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The site-wise log-likelihood score is a good predictor of genes under positive selection.
    Wang HC; Susko E; Roger AJ
    J Mol Evol; 2013 May; 76(5):280-94. PubMed ID: 23595859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GC-biased gene conversion and selection affect GC content in the Oryza genus (rice).
    Muyle A; Serres-Giardi L; Ressayre A; Escobar J; Glémin S
    Mol Biol Evol; 2011 Sep; 28(9):2695-706. PubMed ID: 21504892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why time matters: codon evolution and the temporal dynamics of dN/dS.
    Mugal CF; Wolf JB; Kaj I
    Mol Biol Evol; 2014 Jan; 31(1):212-31. PubMed ID: 24129904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting Adaptation in Protein-Coding Genes Using a Bayesian Site-Heterogeneous Mutation-Selection Codon Substitution Model.
    Rodrigue N; Lartillot N
    Mol Biol Evol; 2017 Jan; 34(1):204-214. PubMed ID: 27744408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Phenotype-Genotype Codon Model for Detecting Adaptive Evolution.
    Jones CT; Youssef N; Susko E; Bielawski JP
    Syst Biol; 2020 Jul; 69(4):722-738. PubMed ID: 31730199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of positive and negative selection in the molecular evolution of insect endosymbionts.
    Fry AJ; Wernegreen JJ
    Gene; 2005 Aug; 355():1-10. PubMed ID: 16039807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.