BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23558386)

  • 1. Acute superoxide scavenging reduces sympathetic vasoconstrictor responsiveness in short-term exercise-trained rats.
    Jendzjowsky NG; Delorey DS
    J Appl Physiol (1985); 2013 Jun; 114(11):1511-8. PubMed ID: 23558386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hindlimb unweighting does not alter vasoconstrictor responsiveness and nitric oxide-mediated inhibition of sympathetic vasoconstriction.
    Just TP; Jendzjowsky NG; DeLorey DS
    J Physiol; 2015 May; 593(9):2213-24. PubMed ID: 25752721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of neuronal nitric oxide in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats.
    Jendzjowsky NG; DeLorey DS
    J Appl Physiol (1985); 2013 Jul; 115(1):97-106. PubMed ID: 23640592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise training and α1-adrenoreceptor-mediated sympathetic vasoconstriction in resting and contracting skeletal muscle.
    Just TP; DeLorey DS
    Physiol Rep; 2016 Feb; 4(3):. PubMed ID: 26869686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-term exercise training augments sympathetic vasoconstrictor responsiveness and endothelium-dependent vasodilation in resting skeletal muscle.
    Jendzjowsky NG; DeLorey DS
    Am J Physiol Regul Integr Comp Physiol; 2012 Aug; 303(3):R332-9. PubMed ID: 22696575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise training augments neuronal nitric oxide synthase-mediated inhibition of sympathetic vasoconstriction in contracting skeletal muscle of rats.
    Jendzjowsky NG; Just TP; DeLorey DS
    J Physiol; 2014 Nov; 592(21):4789-802. PubMed ID: 25194041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex differences in sympathetic vasoconstrictor responsiveness and sympatholysis.
    Just TP; DeLorey DS
    J Appl Physiol (1985); 2017 Jul; 123(1):128-135. PubMed ID: 28473610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term exercise training augments 2-adrenoreceptor-mediated sympathetic vasoconstriction in resting and contracting skeletal muscle.
    Jendzjowsky NG; DeLorey DS
    J Physiol; 2013 Oct; 591(20):5221-33. PubMed ID: 23940382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired modulation of sympathetic vasoconstriction in contracting skeletal muscle of rats with chronic myocardial infarctions: role of oxidative stress.
    Thomas GD; Zhang W; Victor RG
    Circ Res; 2001 Apr; 88(8):816-23. PubMed ID: 11325874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term exercise training enhances functional sympatholysis through a nitric oxide-dependent mechanism.
    Jendzjowsky NG; Delorey DS
    J Physiol; 2013 Mar; 591(6):1535-49. PubMed ID: 23297301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of nitric oxide in exercise sympatholysis.
    Buckwalter JB; Taylor JC; Hamann JJ; Clifford PS
    J Appl Physiol (1985); 2004 Jul; 97(1):417-23; discussion 416. PubMed ID: 15020577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sex and exercise training on β-adrenoreceptor-mediated opposition of evoked sympathetic vasoconstriction in resting and contracting muscle of rats.
    Cooper IR; Liu S; DeLorey DS
    J Appl Physiol (1985); 2021 Jan; 130(1):114-123. PubMed ID: 33090912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-Adrenoreceptors do not oppose sympathetic vasoconstriction in resting and contracting skeletal muscle of male rats.
    Cooper IR; Just TP; DeLorey DS
    Appl Physiol Nutr Metab; 2019 Nov; 44(11):1230-1236. PubMed ID: 30951638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonuniform effects of endurance exercise training on vasodilation in rat skeletal muscle.
    McAllister RM; Jasperse JL; Laughlin MH
    J Appl Physiol (1985); 2005 Feb; 98(2):753-61. PubMed ID: 15448126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function.
    Hirai DM; Copp SW; Holdsworth CT; Ferguson SK; McCullough DJ; Behnke BJ; Musch TI; Poole DC
    Am J Physiol Heart Circ Physiol; 2014 Mar; 306(5):H690-8. PubMed ID: 24414070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise training improves functional sympatholysis in spontaneously hypertensive rats through a nitric oxide-dependent mechanism.
    Mizuno M; Iwamoto GA; Vongpatanasin W; Mitchell JH; Smith SA
    Am J Physiol Heart Circ Physiol; 2014 Jul; 307(2):H242-51. PubMed ID: 24816260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitroso-redox balance in control of coronary vasomotor tone.
    Taverne YJ; de Beer VJ; Hoogteijling BA; Juni RP; Moens AL; Duncker DJ; Merkus D
    J Appl Physiol (1985); 2012 May; 112(10):1644-52. PubMed ID: 22362403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-Arginine supplementation improves antioxidant defenses through L-arginine/nitric oxide pathways in exercised rats.
    Shan L; Wang B; Gao G; Cao W; Zhang Y
    J Appl Physiol (1985); 2013 Oct; 115(8):1146-55. PubMed ID: 23950164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic exercise training increases neuronal nitric oxide release and bioavailability and decreases noradrenaline release in mesenteric artery from spontaneously hypertensive rats.
    Blanco-Rivero J; Roque FR; Sastre E; Caracuel L; Couto GK; Avendaño MS; Paula SM; Rossoni LV; Salaices M; Balfagón G
    J Hypertens; 2013 May; 31(5):916-26. PubMed ID: 23429663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of arteriolar sympathetic constriction by local nitric oxide: onset during rapid juvenile growth.
    Linderman JR; Boegehold MA
    Microvasc Res; 1998 Nov; 56(3):192-202. PubMed ID: 9828157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.