These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. JAK2-v617F mutation is associated with clinical and laboratory features of myeloproliferative neoplasms. Duletić AN; Dekanić A; Hadzisejdić I; Kusen I; Matusan-Ilijas K; Grohovac D; Grahovac B; Jonjić N Coll Antropol; 2012 Sep; 36(3):859-65. PubMed ID: 23213945 [TBL] [Abstract][Full Text] [Related]
7. Angiogenesis and vascular endothelial growth factor-/receptor expression in myeloproliferative neoplasms: correlation with clinical parameters and JAK2-V617F mutational status. Medinger M; Skoda R; Gratwohl A; Theocharides A; Buser A; Heim D; Dirnhofer S; Tichelli A; Tzankov A Br J Haematol; 2009 Jul; 146(2):150-7. PubMed ID: 19466975 [TBL] [Abstract][Full Text] [Related]
8. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα. Hasan S; Lacout C; Marty C; Cuingnet M; Solary E; Vainchenker W; Villeval JL Blood; 2013 Aug; 122(8):1464-77. PubMed ID: 23863895 [TBL] [Abstract][Full Text] [Related]
9. Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing JAK2-V617F. Lundberg P; Takizawa H; Kubovcakova L; Guo G; Hao-Shen H; Dirnhofer S; Orkin SH; Manz MG; Skoda RC J Exp Med; 2014 Oct; 211(11):2213-30. PubMed ID: 25288396 [TBL] [Abstract][Full Text] [Related]
10. A gain-of-function mutation of JAK2 in myeloproliferative disorders. Kralovics R; Passamonti F; Buser AS; Teo SS; Tiedt R; Passweg JR; Tichelli A; Cazzola M; Skoda RC N Engl J Med; 2005 Apr; 352(17):1779-90. PubMed ID: 15858187 [TBL] [Abstract][Full Text] [Related]
11. Deletion of Stat3 in hematopoietic cells enhances thrombocytosis and shortens survival in a JAK2-V617F mouse model of MPN. Grisouard J; Shimizu T; Duek A; Kubovcakova L; Hao-Shen H; Dirnhofer S; Skoda RC Blood; 2015 Mar; 125(13):2131-40. PubMed ID: 25595737 [TBL] [Abstract][Full Text] [Related]
12. JAK2-V617F is a negative regulation factor of SHIP1 protein and thus influences the AKT signaling pathway in patients with Myeloproliferative neoplasm (MPN). Glück M; Dally L; Jücker M; Ehm P Int J Biochem Cell Biol; 2022 Aug; 149():106229. PubMed ID: 35609769 [TBL] [Abstract][Full Text] [Related]
13. Deletion of Stat3 enhances myeloid cell expansion and increases the severity of myeloproliferative neoplasms in Jak2V617F knock-in mice. Yan D; Jobe F; Hutchison RE; Mohi G Leukemia; 2015 Oct; 29(10):2050-61. PubMed ID: 26044284 [TBL] [Abstract][Full Text] [Related]
14. Loss of Stat1 decreases megakaryopoiesis and favors erythropoiesis in a JAK2-V617F-driven mouse model of MPNs. Duek A; Lundberg P; Shimizu T; Grisouard J; Karow A; Kubovcakova L; Hao-Shen H; Dirnhofer S; Skoda RC Blood; 2014 Jun; 123(25):3943-50. PubMed ID: 24820309 [TBL] [Abstract][Full Text] [Related]
15. The 2001 World Health Organization and updated European clinical and pathological criteria for the diagnosis, classification, and staging of the Philadelphia chromosome-negative chronic myeloproliferative disorders. Michiels JJ; De Raeve H; Berneman Z; Van Bockstaele D; Hebeda K; Lam K; Schroyens W Semin Thromb Hemost; 2006 Jun; 32(4 Pt 2):307-40. PubMed ID: 16810609 [TBL] [Abstract][Full Text] [Related]
16. Critical role of FANCC in JAK2 V617F mutant-induced resistance to DNA cross-linking drugs. Ueda F; Sumi K; Tago K; Kasahara T; Funakoshi-Tago M Cell Signal; 2013 Nov; 25(11):2115-24. PubMed ID: 23838005 [TBL] [Abstract][Full Text] [Related]
17. JAK2 (V617F) as an acquired somatic mutation and a secondary genetic event associated with disease progression in familial myeloproliferative disorders. Rumi E; Passamonti F; Pietra D; Della Porta MG; Arcaini L; Boggi S; Elena C; Boveri E; Pascutto C; Lazzarino M; Cazzola M Cancer; 2006 Nov; 107(9):2206-11. PubMed ID: 16998940 [TBL] [Abstract][Full Text] [Related]
18. Expression level and differential JAK2-V617F-binding of the adaptor protein Lnk regulates JAK2-mediated signals in myeloproliferative neoplasms. Baran-Marszak F; Magdoud H; Desterke C; Alvarado A; Roger C; Harel S; Mazoyer E; Cassinat B; Chevret S; Tonetti C; Giraudier S; Fenaux P; Cymbalista F; Varin-Blank N; Le Bousse-Kerdilès MC; Kiladjian JJ; Velazquez L Blood; 2010 Dec; 116(26):5961-71. PubMed ID: 20870899 [TBL] [Abstract][Full Text] [Related]
19. Limited efficacy of BMS-911543 in a murine model of Janus kinase 2 V617F myeloproliferative neoplasm. Pomicter AD; Eiring AM; Senina AV; Zabriskie MS; Marvin JE; Prchal JT; O'Hare T; Deininger MW Exp Hematol; 2015 Jul; 43(7):537-45.e1-11. PubMed ID: 25912019 [TBL] [Abstract][Full Text] [Related]
20. Phospho-STAT5 and phospho-Akt expression in chronic myeloproliferative neoplasms. Grimwade LF; Happerfield L; Tristram C; McIntosh G; Rees M; Bench AJ; Boyd EM; Hall M; Quinn A; Piggott N; Scorer P; Scott MA; Erber WN Br J Haematol; 2009 Nov; 147(4):495-506. PubMed ID: 19747364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]