These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 23558585)

  • 1. Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains.
    Wang Y; San KY; Bennett GN
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6883-93. PubMed ID: 23558585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase.
    Wang Y; San KY; Bennett GN
    J Ind Microbiol Biotechnol; 2013 Dec; 40(12):1449-60. PubMed ID: 24048943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine tuning the glycolytic flux ratio of EP-bifido pathway for mevalonate production by enhancing glucose-6-phosphate dehydrogenase (Zwf) and CRISPRi suppressing 6-phosphofructose kinase (PfkA) in Escherichia coli.
    Li Y; Xian H; Xu Y; Zhu Y; Sun Z; Wang Q; Qi Q
    Microb Cell Fact; 2021 Feb; 20(1):32. PubMed ID: 33531004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation.
    Siedler S; Bringer S; Bott M
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):929-37. PubMed ID: 21670981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport.
    Siedler S; Bringer S; Blank LM; Bott M
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1459-67. PubMed ID: 22002070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH-dependent reductive biotransformation with Escherichia coli and its pfkA deletion mutant: influence on global gene expression and role of oxygen supply.
    Siedler S; Bringer S; Polen T; Bott M
    Biotechnol Bioeng; 2014 Oct; 111(10):2067-75. PubMed ID: 24771245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli.
    Jan J; Martinez I; Wang Y; Bennett GN; San KY
    Biotechnol Prog; 2013; 29(5):1124-30. PubMed ID: 23794523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways.
    Martínez I; Zhu J; Lin H; Bennett GN; San KY
    Metab Eng; 2008 Nov; 10(6):352-9. PubMed ID: 18852061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of glycolysis and its effect on the production of L-threonine in Escherichia coli.
    Xie X; Liang Y; Liu H; Liu Y; Xu Q; Zhang C; Chen N
    J Ind Microbiol Biotechnol; 2014 Jun; 41(6):1007-15. PubMed ID: 24671569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations.
    Chin JW; Cirino PC
    Biotechnol Prog; 2011; 27(2):333-41. PubMed ID: 21344680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing NADPH Availability for Xylitol Production via Pentose-Phosphate-Pathway Gene Overexpression and Embden-Meyerhof-Parnas-Pathway Gene Deletion in
    Yuan X; Mao Y; Tu S; Lin J; Shen H; Yang L; Wu M
    J Agric Food Chem; 2021 Aug; 69(33):9625-9631. PubMed ID: 34382797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose.
    Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of an inducible, pfkA and pfkB deficient strain of Escherichia coli for the expression and purification of phosphofructokinase from bacterial sources.
    Lovingshimer MR; Siegele D; Reinhart GD
    Protein Expr Purif; 2006 Apr; 46(2):475-82. PubMed ID: 16289704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants.
    Siedler S; Lindner SN; Bringer S; Wendisch VF; Bott M
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):143-52. PubMed ID: 22851018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.
    Lee WH; Chin YW; Han NS; Kim MD; Seo JH
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):967-76. PubMed ID: 21538115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli.
    Kim YM; Cho HS; Jung GY; Park JM
    Biotechnol Bioeng; 2011 Dec; 108(12):2941-6. PubMed ID: 21732330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger.
    R Poulsen B; Nøhr J; Douthwaite S; Hansen LV; Iversen JJ; Visser J; Ruijter GJ
    FEBS J; 2005 Mar; 272(6):1313-25. PubMed ID: 15752350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opening a Novel Biosynthetic Pathway to Dihydroxyacetone and Glycerol in
    Guitart Font E; Sprenger GA
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33348713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans.
    Rauch B; Pahlke J; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):711-8. PubMed ID: 20676631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.