These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 23559001)
1. Suppression of SHP-1 promotes corticospinal tract sprouting and functional recovery after brain injury. Tanaka T; Fujita Y; Ueno M; Shultz LD; Yamashita T Cell Death Dis; 2013 Apr; 4(4):e567. PubMed ID: 23559001 [TBL] [Abstract][Full Text] [Related]
2. Combinational Approach of Genetic SHP-1 Suppression and Voluntary Exercise Promotes Corticospinal Tract Sprouting and Motor Recovery Following Brain Injury. Tanaka T; Ito T; Sumizono M; Ono M; Kato N; Honma S; Ueno M Neurorehabil Neural Repair; 2020 Jun; 34(6):558-570. PubMed ID: 32441214 [No Abstract] [Full Text] [Related]
3. Cortical PKC inhibition promotes axonal regeneration of the corticospinal tract and forelimb functional recovery after cervical dorsal spinal hemisection in adult rats. Wang X; Hu J; She Y; Smith GM; Xu XM Cereb Cortex; 2014 Nov; 24(11):3069-79. PubMed ID: 23810979 [TBL] [Abstract][Full Text] [Related]
4. Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment. Zhang Y; Xiong Y; Mahmood A; Meng Y; Liu Z; Qu C; Chopp M Brain Res; 2010 Sep; 1353():249-57. PubMed ID: 20654589 [TBL] [Abstract][Full Text] [Related]
5. Bilateral movement training promotes axonal remodeling of the corticospinal tract and recovery of motor function following traumatic brain injury in mice. Nakagawa H; Ueno M; Itokazu T; Yamashita T Cell Death Dis; 2013 Mar; 4(3):e534. PubMed ID: 23470541 [TBL] [Abstract][Full Text] [Related]
6. Prolonged local neurotrophin-3 infusion reduces ipsilateral collateral sprouting of spared corticospinal axons in adult rats. Hagg T; Baker KA; Emsley JG; Tetzlaff W Neuroscience; 2005; 130(4):875-87. PubMed ID: 15652986 [TBL] [Abstract][Full Text] [Related]
7. Specificity of corticospinal axon arbors sprouting into denervated contralateral spinal cord. Kuang RZ; Kalil K J Comp Neurol; 1990 Dec; 302(3):461-72. PubMed ID: 1702111 [TBL] [Abstract][Full Text] [Related]
8. Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment. Liu Z; Li Y; Zhang X; Savant-Bhonsale S; Chopp M Stroke; 2008 Sep; 39(9):2571-7. PubMed ID: 18617661 [TBL] [Abstract][Full Text] [Related]
9. Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion. Jiang YQ; Armada K; Martin JH Exp Neurol; 2019 Nov; 321():113015. PubMed ID: 31326353 [TBL] [Abstract][Full Text] [Related]
10. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord. Mahmood A; Wu H; Qu C; Xiong Y; Chopp M J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801 [TBL] [Abstract][Full Text] [Related]
11. Axonal regeneration and functional recovery driven by endogenous Nogo receptor antagonist LOTUS in a rat model of unilateral pyramidotomy. Ueno R; Takase H; Suenaga J; Kishimoto M; Kurihara Y; Takei K; Kawahara N; Yamamoto T Exp Neurol; 2020 Jan; 323():113068. PubMed ID: 31629859 [TBL] [Abstract][Full Text] [Related]
12. Intraspinal rewiring of the corticospinal tract requires target-derived brain-derived neurotrophic factor and compensates lost function after brain injury. Ueno M; Hayano Y; Nakagawa H; Yamashita T Brain; 2012 Apr; 135(Pt 4):1253-67. PubMed ID: 22436236 [TBL] [Abstract][Full Text] [Related]
13. Cocultures of rat sensorimotor cortex and spinal cord slices to investigate corticospinal tract sprouting. Stavridis SI; Dehghani F; Korf HW; Hailer NP Spine (Phila Pa 1976); 2009 Nov; 34(23):2494-9. PubMed ID: 19927097 [TBL] [Abstract][Full Text] [Related]
14. Selective long-term reorganization of the corticospinal projection from the supplementary motor cortex following recovery from lateral motor cortex injury. McNeal DW; Darling WG; Ge J; Stilwell-Morecraft KS; Solon KM; Hynes SM; Pizzimenti MA; Rotella DL; Vanadurongvan T; Morecraft RJ J Comp Neurol; 2010 Mar; 518(5):586-621. PubMed ID: 20034062 [TBL] [Abstract][Full Text] [Related]
15. Rewiring of the corticospinal tract in the adult rat after unilateral stroke and anti-Nogo-A therapy. Lindau NT; Bänninger BJ; Gullo M; Good NA; Bachmann LC; Starkey ML; Schwab ME Brain; 2014 Mar; 137(Pt 3):739-56. PubMed ID: 24355710 [TBL] [Abstract][Full Text] [Related]
16. Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury. Li S; Strittmatter SM J Neurosci; 2003 May; 23(10):4219-27. PubMed ID: 12764110 [TBL] [Abstract][Full Text] [Related]
17. The Spinal Transcriptome after Cortical Stroke: In Search of Molecular Factors Regulating Spontaneous Recovery in the Spinal Cord. Kaiser J; Maibach M; Salpeter I; Hagenbuch N; de Souza VBC; Robinson MD; Schwab ME J Neurosci; 2019 Jun; 39(24):4714-4726. PubMed ID: 30962276 [TBL] [Abstract][Full Text] [Related]
18. Anti-Nogo-A antibody treatment enhances sprouting of corticospinal axons rostral to a unilateral cervical spinal cord lesion in adult macaque monkey. Freund P; Wannier T; Schmidlin E; Bloch J; Mir A; Schwab ME; Rouiller EM J Comp Neurol; 2007 Jun; 502(4):644-59. PubMed ID: 17394135 [TBL] [Abstract][Full Text] [Related]
19. Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant. Hiebert GW; Khodarahmi K; McGraw J; Steeves JD; Tetzlaff W J Neurosci Res; 2002 Jul; 69(2):160-8. PubMed ID: 12111797 [TBL] [Abstract][Full Text] [Related]
20. Genetic deletion of paired immunoglobulin-like receptor B does not promote axonal plasticity or functional recovery after traumatic brain injury. Omoto S; Ueno M; Mochio S; Takai T; Yamashita T J Neurosci; 2010 Sep; 30(39):13045-52. PubMed ID: 20881122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]