BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 23559159)

  • 1. Optically clear alginate hydrogels for spatially controlled cell entrapment and culture at microfluidic electrode surfaces.
    Betz JF; Cheng Y; Tsao CY; Zargar A; Wu HC; Luo X; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2013 May; 13(10):1854-8. PubMed ID: 23559159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation.
    Cheng Y; Luo X; Tsao CY; Wu HC; Betz J; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2011 Jul; 11(14):2316-8. PubMed ID: 21629950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles.
    Martinez CJ; Kim JW; Ye C; Ortiz I; Rowat AC; Marquez M; Weitz D
    Macromol Biosci; 2012 Jul; 12(7):946-51. PubMed ID: 22311460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluidic microstructuring of alginate hydrogels for the single cell niche.
    Braschler T; Valero A; Colella L; Pataky K; Brugger J; Renaud P
    Lab Chip; 2010 Oct; 10(20):2771-7. PubMed ID: 20820482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation.
    Braschler T; Johann R; Heule M; Metref L; Renaud P
    Lab Chip; 2005 May; 5(5):553-9. PubMed ID: 15856094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of an optically switched dielectrophoretic (ODEP) force for the manipulation and assembly of cell-encapsulating alginate microbeads in a microfluidic perfusion cell culture system for bottom-up tissue engineering.
    Lin YH; Yang YW; Chen YD; Wang SS; Chang YH; Wu MH
    Lab Chip; 2012 Mar; 12(6):1164-73. PubMed ID: 22322420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "On the fly" continuous generation of alginate fibers using a microfluidic device.
    Shin SJ; Park JY; Lee JY; Park H; Park YD; Lee KB; Whang CM; Lee SH
    Langmuir; 2007 Aug; 23(17):9104-8. PubMed ID: 17637008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic synthesis of tail-shaped alginate microparticles using slow sedimentation.
    Lin YS; Yang CH; Hsu YY; Hsieh CL
    Electrophoresis; 2013 Feb; 34(3):425-31. PubMed ID: 23161405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation and culture of mammalian cells including corneal cells in alginate hydrogels.
    Hunt NC; Grover LM
    Methods Mol Biol; 2013; 1014():201-10. PubMed ID: 23690015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic direct writer with integrated declogging mechanism for fabricating cell-laden hydrogel constructs.
    Ghorbanian S; Qasaimeh MA; Akbari M; Tamayol A; Juncker D
    Biomed Microdevices; 2014 Jun; 16(3):387-95. PubMed ID: 24590741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device.
    Chueh BH; Zheng Y; Torisawa YS; Hsiao AY; Ge C; Hsiong S; Huebsch N; Franceschi R; Mooney DJ; Takayama S
    Biomed Microdevices; 2010 Feb; 12(1):145-51. PubMed ID: 19830565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-triggered cross-linking of alginates with caged Ca2+.
    Cui J; Wang M; Zheng Y; Rodríguez Muñiz GM; del Campo A
    Biomacromolecules; 2013 May; 14(5):1251-6. PubMed ID: 23517470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile single step fabrication of microchannels with varying size.
    Asthana A; Kim KO; Perumal J; Kim DM; Kim DP
    Lab Chip; 2009 Apr; 9(8):1138-42. PubMed ID: 19350097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface.
    Hirama H; Kambe T; Aketagawa K; Ota T; Moriguchi H; Torii T
    Langmuir; 2013 Jan; 29(2):519-24. PubMed ID: 23234383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A calcium-cross-linked hydrogel based on alginate-modified atelocollagen functions as a scaffold material.
    Kamimura W; Hattori R; Koyama H; Miyata T; Takato T
    J Biomater Sci Polym Ed; 2012; 23(5):609-28. PubMed ID: 21310111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strengthening alginate/polyacrylamide hydrogels using various multivalent cations.
    Yang CH; Wang MX; Haider H; Yang JH; Sun JY; Chen YM; Zhou J; Suo Z
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10418-22. PubMed ID: 24128011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpected distribution of immobilized microorganisms within alginate beads.
    Zohar-Perez C; Chet I; Nussinovitch A
    Biotechnol Bioeng; 2004 Dec; 88(5):671-4. PubMed ID: 15472925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative texturometric analysis of hydrogels based on cellulose derivatives, carraghenates, and alginates: evaluation of adhesiveness.
    Vennat B; Lardy F; Arvouet-Grand A; Pourrat A
    Drug Dev Ind Pharm; 1998 Jan; 24(1):27-35. PubMed ID: 15605594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.