BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23559200)

  • 21. Localization of a repetitive DNA sequence to the primary constrictions of maize pachytene chromosomes.
    Chen CC; Chen CM; Yang JT; Kao YY
    Chromosome Res; 1998 Apr; 6(3):236-8. PubMed ID: 9609669
    [No Abstract]   [Full Text] [Related]  

  • 22. Physical localization of single-copy sequences on pachytene chromosomes in maize (Zea mays L.) by chromosome in situ suppression hybridization.
    Sadder MT; Ponelies N; Born U; Weber G
    Genome; 2000 Dec; 43(6):1081-3. PubMed ID: 11195341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Meiotic loss of the B chromosomes of maize is influenced by the B univalent co-orientation and the TR-1 knob constitution of the A chromosomes.
    González-Sánchez M; González-García M; Vega JM; Rosato M; Cuacos M; Puertas MJ
    Cytogenet Genome Res; 2007; 119(3-4):282-90. PubMed ID: 18253043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genomic affinities revealed by GISH suggests intergenomic restructuring between parental genomes of the paleopolyploid genus Zea.
    González GE; Poggio L
    Genome; 2015 Oct; 58(10):433-9. PubMed ID: 26506040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation.
    Kato A; Albert PS; Vega JM; Birchler JA
    Biotech Histochem; 2006; 81(2-3):71-8. PubMed ID: 16908431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a maize isochromosome 8S*8S.
    Yu W; Han F; Kato A; Birchler JA
    Genome; 2006 Jun; 49(6):700-6. PubMed ID: 16936849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GISHGenomic in situ hybridization reveals cryptic genetic differences between maize and its putative wild progenitor Zea mays subsp. parviglumis.
    Gonzalez G; Confalonieri V; Comas C; Naranjo CA; Poggio L
    Genome; 2004 Oct; 47(5):947-53. PubMed ID: 15499408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromosome Painting by GISH and Multicolor FISH.
    Xu SS; Liu Z; Zhang Q; Niu Z; Jan CC; Cai X
    Methods Mol Biol; 2016; 1429():7-21. PubMed ID: 27511163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coordination of meiotic recombination, pairing, and synapsis by PHS1.
    Pawlowski WP; Golubovskaya IN; Timofejeva L; Meeley RB; Sheridan WF; Cande WZ
    Science; 2004 Jan; 303(5654):89-92. PubMed ID: 14704428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of samples for comparative studies of plant chromosomes using in situ hybridization methods.
    Walling JG; Pires JC; Jackson SA
    Methods Enzymol; 2005; 395():443-60. PubMed ID: 15865979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion.
    Amarillo FI; Bass HW
    Genetics; 2007 Nov; 177(3):1509-26. PubMed ID: 17947405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromosome-Specific Painting in Cucumis Species Using Bulked Oligonucleotides.
    Han Y; Zhang T; Thammapichai P; Weng Y; Jiang J
    Genetics; 2015 Jul; 200(3):771-9. PubMed ID: 25971668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence in situ hybridization analysis of human oocytes: advantages of a double-labeling procedure.
    Pellestor F; Anahory T; Andréo B; Régnier-Vigouroux G; Soulié JP; Baudouin M; Demaille J
    Fertil Steril; 2004 Oct; 82(4):919-22. PubMed ID: 15482769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diversity of chromosomal karyotypes in maize and its relatives.
    Albert PS; Gao Z; Danilova TV; Birchler JA
    Cytogenet Genome Res; 2010 Jul; 129(1-3):6-16. PubMed ID: 20551613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oligo-painting and GISH reveal meiotic chromosome biases and increased meiotic stability in synthetic allotetraploid Cucumis ×hytivus with dysploid parental karyotypes.
    Zhao Q; Wang Y; Bi Y; Zhai Y; Yu X; Cheng C; Wang P; Li J; Lou Q; Chen J
    BMC Plant Biol; 2019 Nov; 19(1):471. PubMed ID: 31694540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species.
    He L; Braz GT; Torres GA; Jiang J
    Chromosoma; 2018 Dec; 127(4):505-513. PubMed ID: 30242479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectral karyotyping (SKY) of mouse meiotic chromosomes.
    Heng HH; Liu G; Lu W; Bremer S; Ye CJ; Hughes M; Moens P
    Genome; 2001 Apr; 44(2):293-8. PubMed ID: 11341740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An asymptotic determination of minimum centromere size for the maize B chromosome.
    Phelps-Durr TL; Birchler JA
    Cytogenet Genome Res; 2004; 106(2-4):309-13. PubMed ID: 15292608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships.
    Albert PS; Zhang T; Semrau K; Rouillard JM; Kao YH; Wang CR; Danilova TV; Jiang J; Birchler JA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1679-1685. PubMed ID: 30655344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studying meiosis: a review of FISH and M-FISH techniques used in the analysis of meiotic processes in humans.
    Oliver-Bonet M; Benet J; Martin RH
    Cytogenet Genome Res; 2006; 114(3-4):312-8. PubMed ID: 16954672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.