BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23559217)

  • 1. Analysis of meiotic protein complexes from Arabidopsis and Brassica using affinity-based proteomics.
    Osman K; Roitinger E; Yang J; Armstrong S; Mechtler K; Franklin FC
    Methods Mol Biol; 2013; 990():215-26. PubMed ID: 23559217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affinity proteomics reveals extensive phosphorylation of the Brassica chromosome axis protein ASY1 and a network of associated proteins at prophase I of meiosis.
    Osman K; Yang J; Roitinger E; Lambing C; Heckmann S; Howell E; Cuacos M; Imre R; Dürnberger G; Mechtler K; Armstrong S; Franklin FCH
    Plant J; 2018 Jan; 93(1):17-33. PubMed ID: 29078019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of Histone Modifications in Plants by Tandem Mass Spectrometry.
    Mahrez W; Hennig L
    Methods Mol Biol; 2018; 1675():131-145. PubMed ID: 29052190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pollen Coat Proteomes of
    Wang L; Lau YL; Fan L; Bosch M; Doughty J
    Biomolecules; 2023 Jan; 13(1):. PubMed ID: 36671543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunolocalization of meiotic proteins in Brassicaceae: method 1.
    Chelysheva LA; Grandont L; Grelon M
    Methods Mol Biol; 2013; 990():93-101. PubMed ID: 23559205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the xylem sap proteome of Brassica oleracea reveals a high content in secreted proteins.
    Ligat L; Lauber E; Albenne C; San Clemente H; Valot B; Zivy M; Pont-Lezica R; Arlat M; Jamet E
    Proteomics; 2011 May; 11(9):1798-813. PubMed ID: 21413152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A strategy to investigate the plant meiotic proteome.
    Sánchez-Morán E; Mercier R; Higgins JD; Armstrong SJ; Jones GH; Franklin FC
    Cytogenet Genome Res; 2005; 109(1-3):181-9. PubMed ID: 15753575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In planta chemical cross-linking and mass spectrometry analysis of protein structure and interaction in Arabidopsis.
    Zhu X; Yu F; Yang Z; Liu S; Dai C; Lu X; Liu C; Yu W; Li N
    Proteomics; 2016 Jul; 16(13):1915-27. PubMed ID: 27198063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of root plasma membrane aquaporins from Brassica oleracea: post-translational modifications, de novo sequencing and detection of isoforms by high resolution mass spectrometry.
    Casado-Vela J; Muries B; Carvajal M; Iloro I; Elortza F; Martínez-Ballesta MC
    J Proteome Res; 2010 Jul; 9(7):3479-94. PubMed ID: 20462273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica.
    Armstrong SJ; Caryl AP; Jones GH; Franklin FC
    J Cell Sci; 2002 Sep; 115(Pt 18):3645-55. PubMed ID: 12186950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues.
    Smaczniak C; Li N; Boeren S; America T; van Dongen W; Goerdayal SS; de Vries S; Angenent GC; Kaufmann K
    Nat Protoc; 2012 Dec; 7(12):2144-58. PubMed ID: 23196971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotin-Based Proximity Labeling of Protein Complexes in Planta.
    Khan M; Subramaniam R; Desveaux D
    Methods Mol Biol; 2021; 2200():425-440. PubMed ID: 33175391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction proteomics: characterization of protein complexes using tandem affinity purification-mass spectrometry.
    Völkel P; Le Faou P; Angrand PO
    Biochem Soc Trans; 2010 Aug; 38(4):883-7. PubMed ID: 20658971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of MAP-kinase protein complexes and identification of candidate components by XL-TAP-MS.
    Leissing F; Misch NV; Wang X; Werner L; Huang L; Conrath U; Beckers GJM
    Plant Physiol; 2021 Dec; 187(4):2381-2392. PubMed ID: 34609515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting Pistil Responses to Incompatible and Compatible Pollen in Self-Incompatibility Brassica oleracea Using Comparative Proteomics.
    Zeng J; Gao Q; Shi S; Lian X; Converse R; Zhang H; Yang X; Ren X; Chen S; Zhu L
    Protein J; 2017 Apr; 36(2):123-137. PubMed ID: 28299594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of In Planta Protein-Protein Interactions Using IP-MS.
    Jamge S; Angenent GC; Bemer M
    Methods Mol Biol; 2018; 1675():315-329. PubMed ID: 29052199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis.
    Hajduch M; Casteel JE; Hurrelmeyer KE; Song Z; Agrawal GK; Thelen JJ
    Plant Physiol; 2006 May; 141(1):32-46. PubMed ID: 16543413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein identification using nano liquid chromatography-tandem mass spectrometry.
    Negroni L
    Methods Mol Biol; 2007; 355():235-48. PubMed ID: 17093315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative proteomics by 2DE and MALDI MS/MS uncover the effects of organic and conventional cropping methods on vegetable products.
    Nawrocki A; Thorup-Kristensen K; Jensen ON
    J Proteomics; 2011 Nov; 74(12):2810-25. PubMed ID: 21757040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.