These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64 related articles for article (PubMed ID: 2355940)
1. Limits of normal nerve function during high-frequency stimulation. Robinson LR; Nielsen VK Muscle Nerve; 1990 Apr; 13(4):279-85. PubMed ID: 2355940 [TBL] [Abstract][Full Text] [Related]
2. Reduced capability of transmitting high frequency impulses in tail nerves of diabetic rats. Nielsen JF; Andersen H; Nielsen VK Muscle Nerve; 1993 Mar; 16(3):283-8. PubMed ID: 8446126 [TBL] [Abstract][Full Text] [Related]
3. Inability of insulin to maintain normal nerve function during high-frequency stimulation in diabetic rat tail nerves. Andersen H; Nielsen JF; Nielsen VK Muscle Nerve; 1994 Jan; 17(1):80-4. PubMed ID: 8264706 [TBL] [Abstract][Full Text] [Related]
4. Physiological evidence for branching of peripheral unmyelinated sensory afferent fibers in the rat. McMahon SB; Wall PD J Comp Neurol; 1987 Jul; 261(1):130-6. PubMed ID: 3624540 [TBL] [Abstract][Full Text] [Related]
5. [Stimulus effect of submaximal trains of impulses on nerves]. Hasegawa O; Kurita R; Kubota-Nara Y; Ohta S; Komiyama A No To Shinkei; 1996 Jan; 48(1):27-30. PubMed ID: 8679315 [TBL] [Abstract][Full Text] [Related]
6. Carbon disulfide neurotoxicity in rats: VI. Electrophysiological examination of caudal tail nerve compound action potentials and nerve conduction velocity. Herr DW; Vo KT; Morgan DL; Sills RC Neurotoxicology; 1998 Feb; 19(1):129-46. PubMed ID: 9498229 [TBL] [Abstract][Full Text] [Related]
7. [Peripheral and central neural conduction in the rat]. Claus D; Neundörfer B EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1983 Sep; 14(3):160-3. PubMed ID: 6414805 [TBL] [Abstract][Full Text] [Related]
8. Electrophysiologic recovery of acute conduction block of rat tail nerve. Hong CZ; Yu J Arch Phys Med Rehabil; 1989 Mar; 70(3):205-9. PubMed ID: 2923542 [TBL] [Abstract][Full Text] [Related]
9. Effects of hexane on the brainstem auditory response and caudal nerve action potential. Rebert CS; Houghton PW; Howd RA; Pryor GT Neurobehav Toxicol Teratol; 1982; 4(1):79-85. PubMed ID: 7070572 [TBL] [Abstract][Full Text] [Related]
10. Hyperosmolar solutions selectively block action potentials in rat myelinated sensory fibers: implications for diabetic neuropathy. Matsuka Y; Spigelman I J Neurophysiol; 2004 Jan; 91(1):48-56. PubMed ID: 13679399 [TBL] [Abstract][Full Text] [Related]
11. Continuous stimulation of transected distal nerves fails to prolong action potential propagation. O'Gara T; Urban W; Polishchuk D; Pierre-Louis A; Stewart M Clin Orthop Relat Res; 2006 Jun; 447():209-13. PubMed ID: 16505717 [TBL] [Abstract][Full Text] [Related]
12. [Interrelationship among nerve conduction velocity, amplitudes of compound muscle and compound nerve action potentials in diabetic neuropathy]. Hasegawa O; Matsumoto S; Iino M; Mori I; Arita T; Baba Y No To Shinkei; 1999 Oct; 51(10):863-6. PubMed ID: 10553586 [TBL] [Abstract][Full Text] [Related]
13. Resistance to ischemic conduction block of the peripheral nerve in hyperglycemic rats: an electrophysiological study. Shirabe S; Kinoshita I; Matsuo H; Takashima H; Nakamura T; Tsujihata M; Nagataki S Muscle Nerve; 1988 Jun; 11(6):582-7. PubMed ID: 3386666 [TBL] [Abstract][Full Text] [Related]
14. Compound sensory action potential in normal and pathological human nerves. Krarup C Muscle Nerve; 2004 Apr; 29(4):465-83. PubMed ID: 15052613 [TBL] [Abstract][Full Text] [Related]
15. Transient focal conduction block following experimental occlusion of the vasa nervorum. Parry GJ; Linn DJ Muscle Nerve; 1986 May; 9(4):345-8. PubMed ID: 3713740 [TBL] [Abstract][Full Text] [Related]
16. Correlation of sensory electroneurographic recordings and myelinated fiber diameters of the superficial peroneal nerve of dogs. Niederhauser UB; Holliday TA; Hyde DM; McQuarrie AD; Fisher LD Am J Vet Res; 1990 Oct; 51(10):1587-95. PubMed ID: 2240781 [TBL] [Abstract][Full Text] [Related]
17. Increased spike-frequency adaptation and tea sensitivity in dorsal root fibers after sciatic nerve injury. Utzschneider DA; Bhisitkhul RB; Kocsis JD Muscle Nerve; 1993 Sep; 16(9):958-63. PubMed ID: 8355727 [TBL] [Abstract][Full Text] [Related]
18. Axonal branching following crush lesions of peripheral nerves of rat. Toft PB; Fugleholm K; Schmalbruch H Muscle Nerve; 1988 Aug; 11(8):880-9. PubMed ID: 3173412 [TBL] [Abstract][Full Text] [Related]
19. Persistent reduction of conduction velocity and myelinated axon damage in vibrated rat tail nerves. Loffredo MA; Yan JG; Kao D; Zhang LL; Matloub HS; Riley DA Muscle Nerve; 2009 Jun; 39(6):770-5. PubMed ID: 19306323 [TBL] [Abstract][Full Text] [Related]
20. Estimation of the conduction velocity distribution of peripheral nerve trunks. Tu Y; Honda S; Tomita Y Front Med Biol Eng; 1999; 9(3):189-97. PubMed ID: 10612559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]