These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23560061)

  • 1. Remodeling of oxidative energy metabolism by galactose improves glucose handling and metabolic switching in human skeletal muscle cells.
    Kase ET; Nikolić N; Bakke SS; Bogen KK; Aas V; Thoresen GH; Rustan AC
    PLoS One; 2013; 8(4):e59972. PubMed ID: 23560061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic hyperglycemia reduces substrate oxidation and impairs metabolic switching of human myotubes.
    Aas V; Hessvik NP; Wettergreen M; Hvammen AW; Hallén S; Thoresen GH; Rustan AC
    Biochim Biophys Acta; 2011 Jan; 1812(1):94-105. PubMed ID: 20888904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells.
    Aguer C; Gambarotta D; Mailloux RJ; Moffat C; Dent R; McPherson R; Harper ME
    PLoS One; 2011; 6(12):e28536. PubMed ID: 22194845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic switching of human myotubes is improved by n-3 fatty acids.
    Hessvik NP; Bakke SS; Fredriksson K; Boekschoten MV; Fjørkenstad A; Koster G; Hesselink MK; Kersten S; Kase ET; Rustan AC; Thoresen GH
    J Lipid Res; 2010 Aug; 51(8):2090-104. PubMed ID: 20363834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PPARδ activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference.
    Feng YZ; Nikolić N; Bakke SS; Boekschoten MV; Kersten S; Kase ET; Rustan AC; Thoresen GH
    Arch Physiol Biochem; 2014 Feb; 120(1):12-21. PubMed ID: 23991827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential utilization of saturated palmitate and unsaturated oleate: evidence from cultured myotubes.
    Gaster M; Rustan AC; Beck-Nielsen H
    Diabetes; 2005 Mar; 54(3):648-56. PubMed ID: 15734839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pancreatic cancer cells show lower oleic acid oxidation and their conditioned medium inhibits oleic acid oxidation in human myotubes.
    Krapf SA; Lund J; Lundkvist M; Dale MG; Nyman TA; Thoresen GH; Kase ET
    Pancreatology; 2020 Jun; 20(4):676-682. PubMed ID: 32360002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low glucose but not galactose enhances oxidative mitochondrial metabolism in C2C12 myoblasts and myotubes.
    Elkalaf M; Anděl M; Trnka J
    PLoS One; 2013; 8(8):e70772. PubMed ID: 23940640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remodeling lipid metabolism and improving insulin responsiveness in human primary myotubes.
    Sparks LM; Moro C; Ukropcova B; Bajpeyi S; Civitarese AE; Hulver MW; Thoresen GH; Rustan AC; Smith SR
    PLoS One; 2011; 6(7):e21068. PubMed ID: 21760887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eicosapentaenoic acid (20:5 n-3) increases fatty acid and glucose uptake in cultured human skeletal muscle cells.
    Aas V; Rokling-Andersen MH; Kase ET; Thoresen GH; Rustan AC
    J Lipid Res; 2006 Feb; 47(2):366-74. PubMed ID: 16301737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid incubation of myotubes from humans with type 2 diabetes leads to enhanced release of beta-oxidation products because of impaired fatty acid oxidation: effects of tetradecylthioacetic acid and eicosapentaenoic acid.
    Wensaas AJ; Rustan AC; Just M; Berge RK; Drevon CA; Gaster M
    Diabetes; 2009 Mar; 58(3):527-35. PubMed ID: 19066312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endocrine control of oleic acid and glucose metabolism in rainbow trout (Oncorhynchus mykiss) muscle cells in culture.
    Sánchez-Gurmaches J; Cruz-Garcia L; Gutiérrez J; Navarro I
    Am J Physiol Regul Integr Comp Physiol; 2010 Aug; 299(2):R562-72. PubMed ID: 20484701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle.
    Montgomery MK; Osborne B; Brown SH; Small L; Mitchell TW; Cooney GJ; Turner N
    J Lipid Res; 2013 Dec; 54(12):3322-33. PubMed ID: 24078708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a high-throughput method for real-time assessment of cellular metabolism in intact long skeletal muscle fibre bundles.
    Li R; Steyn FJ; Stout MB; Lee K; Cully TR; Calderón JC; Ngo ST
    J Physiol; 2016 Dec; 594(24):7197-7213. PubMed ID: 27619319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of perilipin 2 in cultured myotubes enhances lipolysis and redirects the metabolic energy balance from glucose oxidation towards fatty acid oxidation.
    Feng YZ; Lund J; Li Y; Knabenes IK; Bakke SS; Kase ET; Lee YK; Kimmel AR; Thoresen GH; Rustan AC; Dalen KT
    J Lipid Res; 2017 Nov; 58(11):2147-2161. PubMed ID: 28822960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of lactic acid in human myotubes and interplay with glucose and fatty acid metabolism.
    Lund J; Aas V; Tingstad RH; Van Hees A; Nikolić N
    Sci Rep; 2018 Jun; 8(1):9814. PubMed ID: 29959350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism.
    Nehlin JO; Just M; Rustan AC; Gaster M
    Biogerontology; 2011 Aug; 12(4):349-65. PubMed ID: 21512720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mitochondria-targeted imidazole substituted oleic acid 'TPP-IOA' affects mitochondrial bioenergetics and its protective efficacy in cells is influenced by cellular dependence on aerobic metabolism.
    Maddalena LA; Ghelfi M; Atkinson J; Stuart JA
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):73-85. PubMed ID: 27836699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-dose caffeine administration increases fatty acid utilization and mitochondrial turnover in C2C12 skeletal myotubes.
    Enyart DS; Crocker CL; Stansell JR; Cutrone M; Dintino MM; Kinsey ST; Brown SL; Baumgarner BL
    Physiol Rep; 2020 Jan; 8(1):e14340. PubMed ID: 31960608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of acute BPA exposure on skeletal muscle mitochondrial function and glucose metabolism.
    Ahmed F; Chehadé L; Garneau L; Caron A; Aguer C
    Mol Cell Endocrinol; 2020 Jan; 499():110580. PubMed ID: 31536778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.