BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 23560077)

  • 41. 5-Methylcytosine and 5-hydroxymethylcytosine spatiotemporal profiles in the mouse zygote.
    Salvaing J; Aguirre-Lavin T; Boulesteix C; Lehmann G; Debey P; Beaujean N
    PLoS One; 2012; 7(5):e38156. PubMed ID: 22693592
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Similar DNA methylation and histone H3 lysine 9 dimethylation patterns in tripronuclear and corrected bipronuclear human zygotes.
    Chen X; Fan Y; Long X; Sun X
    J Reprod Dev; 2010 Jun; 56(3):324-9. PubMed ID: 20197641
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Haploinsufficiency, but not defective paternal 5mC oxidation, accounts for the developmental defects of maternal Tet3 knockouts.
    Inoue A; Shen L; Matoba S; Zhang Y
    Cell Rep; 2015 Feb; 10(4):463-70. PubMed ID: 25640176
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Active demethylation of paternal genome in mammalian zygotes.
    Abdalla H; Yoshizawa Y; Hochi S
    J Reprod Dev; 2009 Aug; 55(4):356-60. PubMed ID: 19721335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification.
    Ito S; D'Alessio AC; Taranova OV; Hong K; Sowers LC; Zhang Y
    Nature; 2010 Aug; 466(7310):1129-33. PubMed ID: 20639862
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine.
    Hackett JA; Sengupta R; Zylicz JJ; Murakami K; Lee C; Down TA; Surani MA
    Science; 2013 Jan; 339(6118):448-52. PubMed ID: 23223451
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic reprogramming of 5-hydroxymethylcytosine during early porcine embryogenesis.
    Cao Z; Zhou N; Zhang Y; Zhang Y; Wu R; Li Y; Zhang Y; Li N
    Theriogenology; 2014 Feb; 81(3):496-508. PubMed ID: 24315686
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2.
    Doege CA; Inoue K; Yamashita T; Rhee DB; Travis S; Fujita R; Guarnieri P; Bhagat G; Vanti WB; Shih A; Levine RL; Nik S; Chen EI; Abeliovich A
    Nature; 2012 Aug; 488(7413):652-5. PubMed ID: 22902501
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oxidative stress in sperm affects the epigenetic reprogramming in early embryonic development.
    Wyck S; Herrera C; Requena CE; Bittner L; Hajkova P; Bollwein H; Santoro R
    Epigenetics Chromatin; 2018 Oct; 11(1):60. PubMed ID: 30333056
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vitrification of murine mature metaphase II oocytes perturbs DNA methylation reprogramming during preimplantation embryo development.
    Cao Z; Zhang M; Xu T; Chen Z; Tong X; Zhang D; Wang Y; Zhang L; Gao D; Luo L; Khan IM; Zhang Y
    Cryobiology; 2019 Apr; 87():91-98. PubMed ID: 30707961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells.
    Guo F; Li L; Li J; Wu X; Hu B; Zhu P; Wen L; Tang F
    Cell Res; 2017 Aug; 27(8):967-988. PubMed ID: 28621329
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming.
    Gao Y; Chen J; Li K; Wu T; Huang B; Liu W; Kou X; Zhang Y; Huang H; Jiang Y; Yao C; Liu X; Lu Z; Xu Z; Kang L; Chen J; Wang H; Cai T; Gao S
    Cell Stem Cell; 2013 Apr; 12(4):453-69. PubMed ID: 23499384
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers.
    Seisenberger S; Peat JR; Hore TA; Santos F; Dean W; Reik W
    Philos Trans R Soc Lond B Biol Sci; 2013 Jan; 368(1609):20110330. PubMed ID: 23166394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatiotemporal dynamics of OCT4 protein localization during preimplantation development in mice.
    Fukuda A; Mitani A; Miyashita T; Kobayashi H; Umezawa A; Akutsu H
    Reproduction; 2016 Nov; 152(5):417-30. PubMed ID: 27495230
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes.
    Shen L; Inoue A; He J; Liu Y; Lu F; Zhang Y
    Cell Stem Cell; 2014 Oct; 15(4):459-471. PubMed ID: 25280220
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stella preserves maternal chromosome integrity by inhibiting 5hmC-induced γH2AX accumulation.
    Nakatani T; Yamagata K; Kimura T; Oda M; Nakashima H; Hori M; Sekita Y; Arakawa T; Nakamura T; Nakano T
    EMBO Rep; 2015 May; 16(5):582-9. PubMed ID: 25694116
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote.
    Guo F; Li X; Liang D; Li T; Zhu P; Guo H; Wu X; Wen L; Gu TP; Hu B; Walsh CP; Li J; Tang F; Xu GL
    Cell Stem Cell; 2014 Oct; 15(4):447-459. PubMed ID: 25220291
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Methylation profile of the promoters of Nanog and Oct4 in ICSI human embryos.
    Al-Khtib M; Blachère T; Guérin JF; Lefèvre A
    Hum Reprod; 2012 Oct; 27(10):2948-54. PubMed ID: 22914767
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tet family of 5-methylcytosine dioxygenases in mammalian development.
    Zhao H; Chen T
    J Hum Genet; 2013 Jul; 58(7):421-7. PubMed ID: 23719188
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome editing reveals a role for OCT4 in human embryogenesis.
    Fogarty NME; McCarthy A; Snijders KE; Powell BE; Kubikova N; Blakeley P; Lea R; Elder K; Wamaitha SE; Kim D; Maciulyte V; Kleinjung J; Kim JS; Wells D; Vallier L; Bertero A; Turner JMA; Niakan KK
    Nature; 2017 Oct; 550(7674):67-73. PubMed ID: 28953884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.