These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2356014)

  • 1. Postischemic hypoxia improves metabolic and functional recovery of the spinal cord.
    Danielisova V; Marsala M; Chavko M; Marsala J
    Neurology; 1990 Jul; 40(7):1125-9. PubMed ID: 2356014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of energy state and basic modifications of neuropathological damage in rabbits as a result of graded postischemic spinal cord reoxygenation.
    Marsala M; Danielisová V; Chavko M; Hornáková A; Marsala J
    Exp Neurol; 1989 Jul; 105(1):93-103. PubMed ID: 2744132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative effects of the N-methyl-D-aspartate antagonist MK-801 and the calcium channel blocker KB-2796 on neurologic and metabolic recovery after spinal cord ischemia.
    Danielisová V; Chavko M
    Exp Neurol; 1998 Jan; 149(1):203-8. PubMed ID: 9454629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenine nucleotide levels and regional distribution of ATP in rabbit spinal cord after ischemia and recirculation.
    Danielisová V; Chavko M; Kehr J
    Neurochem Res; 1987 Mar; 12(3):241-5. PubMed ID: 3587496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Susceptibility of feline spinal cord energy metabolism to severe incomplete ischemia.
    Anderson DK; Behbehani MM; Means ED; Waters TR; Green ES
    Neurology; 1983 Jun; 33(6):722-31. PubMed ID: 6682517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graded postischemic reoxygenation reduces lipid peroxidation and reperfusion injury in the rabbit spinal cord.
    Fercakova A; Halat G; Marsala M; Lukacova N; Marsala J
    Brain Res; 1992 Oct; 593(2):159-67. PubMed ID: 1450926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The blood-brain barrier permeability in graded postischemic spinal cord reoxygenation in rabbits.
    Orendácová J; Marsala M; Marsala J
    Neurosci Lett; 1991 Jul; 128(2):143-6. PubMed ID: 1945034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of propentofylline (HWA 285) on metabolic and functional recovery in the spinal cord after ischemia.
    Danielisová V; Chavko M; Schubert PH
    Neuropharmacology; 1994 Feb; 33(2):199-204. PubMed ID: 8035904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KB-2796, a calcium channel blocker, ameliorates ischemic spinal cord damage in rabbits.
    Danielisova V; Chavko M
    Neurochem Res; 1994 Dec; 19(12):1503-7. PubMed ID: 7877720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protection against spinal cord ischemia with insulin-induced hypoglycemia.
    Robertson CS; Grossman RG
    J Neurosurg; 1987 Nov; 67(5):739-44. PubMed ID: 3312514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms of ischemic damage of spinal cord.
    Chavko M; Burda J; Danielisová V; Marsala J
    Gerontology; 1987; 33(3-4):220-6. PubMed ID: 2443428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amelioration of ischemic spinal cord damage by postischemic treatment with propentofylline (HWA 285).
    Danielisová V; Chavko M
    Brain Res; 1992 Sep; 590(1-2):321-4. PubMed ID: 1422840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood flow and electrolytes in spinal cord ischemia.
    Chavko M; Kalincakova K; Kluchova D; Nemoto E
    Exp Neurol; 1991 Jun; 112(3):299-303. PubMed ID: 2029929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction in spinal cord postischemic lactic acidosis and functional improvement with dichloroacetate.
    Robertson CS; Goodman JC; Grossman RG; Priessman A
    J Neurotrauma; 1990; 7(1):1-12. PubMed ID: 2342114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy metabolism in the dog's spinal cord after prolonged partial ischaemia and recirculation.
    Chavko M; Danielisová V
    Physiol Bohemoslov; 1980; 29(1):49-53. PubMed ID: 6444738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of spinal cord ischemia on evoked potential recovery and postischemic regional spinal cord blood flow.
    Osenbach RK; Hitchon PW; Mouw L; Yamada T
    J Spinal Disord; 1993 Apr; 6(2):146-54. PubMed ID: 8504227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroprotective effect of graded postischemic reoxygenation in spinal cord ischemia in the rabbit.
    Lukácová N; Marsala M; Halát G; Marsala J
    Brain Res Bull; 1997; 43(5):457-65. PubMed ID: 9250619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal cord energy metabolism following compression trauma to the feline spinal cord.
    Anderson DK; Means ED; Waters TR; Spears CJ
    J Neurosurg; 1980 Sep; 53(3):375-80. PubMed ID: 7420153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Augmentation of systemic blood pressure during spinal cord ischemia to prevent postoperative paraplegia after aortic surgery in a rabbit model.
    Izumi S; Okada K; Hasegawa T; Omura A; Munakata H; Matsumori M; Okita Y
    J Thorac Cardiovasc Surg; 2010 May; 139(5):1261-8. PubMed ID: 19910005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heme Oxygenase-1 Protects Neurons from Ischemic Damage by Upregulating Expression of Cu,Zn-Superoxide Dismutase, Catalase, and Brain-Derived Neurotrophic Factor in the Rabbit Spinal Cord.
    Jung HY; Kim DW; Yim HS; Yoo DY; Kim JW; Won MH; Yoon YS; Choi SY; Hwang IK
    Neurochem Res; 2016 Apr; 41(4):869-79. PubMed ID: 26559686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.