These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 23560407)
1. Cryogenic electrospinning: proposed mechanism, process parameters and its use in engineering of bilayered tissue structures. Leong MF; Chan WY; Chian KS Nanomedicine (Lond); 2013 Apr; 8(4):555-66. PubMed ID: 23560407 [TBL] [Abstract][Full Text] [Related]
2. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique. Leong MF; Rasheed MZ; Lim TC; Chian KS J Biomed Mater Res A; 2009 Oct; 91(1):231-40. PubMed ID: 18814222 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and in vitro and in vivo cell infiltration study of a bilayered cryogenic electrospun poly(D,L-lactide) scaffold. Leong MF; Chan WY; Chian KS; Rasheed MZ; Anderson JM J Biomed Mater Res A; 2010 Sep; 94(4):1141-9. PubMed ID: 20694981 [TBL] [Abstract][Full Text] [Related]
4. Increasing the pore size of electrospun scaffolds. Rnjak-Kovacina J; Weiss AS Tissue Eng Part B Rev; 2011 Oct; 17(5):365-72. PubMed ID: 21815802 [TBL] [Abstract][Full Text] [Related]
5. Bilayered scaffold for engineering cellularized blood vessels. Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Zhong S; Zhang Y; Lim CT Tissue Eng Part B Rev; 2012 Apr; 18(2):77-87. PubMed ID: 21902623 [TBL] [Abstract][Full Text] [Related]
7. Macroporosity enhances vascularization of electrospun scaffolds. Joshi VS; Lei NY; Walthers CM; Wu B; Dunn JC J Surg Res; 2013 Jul; 183(1):18-26. PubMed ID: 23769018 [TBL] [Abstract][Full Text] [Related]
8. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Lee JB; Jeong SI; Bae MS; Yang DH; Heo DN; Kim CH; Alsberg E; Kwon IK Tissue Eng Part A; 2011 Nov; 17(21-22):2695-702. PubMed ID: 21682540 [TBL] [Abstract][Full Text] [Related]
9. Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo-vascularization and cellular infiltration. Lim TC; Chian KS; Leong KF J Biomed Mater Res A; 2010 Sep; 94(4):1303-11. PubMed ID: 20694998 [TBL] [Abstract][Full Text] [Related]
10. [Progress on cell infiltration in electrospun scaffold]. An B; Sun M; Sun M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Feb; 27(2):219-22. PubMed ID: 23596692 [TBL] [Abstract][Full Text] [Related]
11. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Rnjak-Kovacina J; Wise SG; Li Z; Maitz PK; Young CJ; Wang Y; Weiss AS Biomaterials; 2011 Oct; 32(28):6729-36. PubMed ID: 21683438 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of three-dimensional poly(ε-caprolactone) scaffolds with hierarchical pore structures for tissue engineering. Zhang Q; Luo H; Zhang Y; Zhou Y; Ye Z; Tan W; Lang M Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2094-103. PubMed ID: 23498237 [TBL] [Abstract][Full Text] [Related]
13. The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds. Li L; Qian Y; Jiang C; Lv Y; Liu W; Zhong L; Cai K; Li S; Yang L Biomaterials; 2012 Apr; 33(12):3428-45. PubMed ID: 22300743 [TBL] [Abstract][Full Text] [Related]
14. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions. Ngadiman NHA; Noordin MY; Idris A; Kurniawan D Proc Inst Mech Eng H; 2017 Jul; 231(7):597-616. PubMed ID: 28347262 [TBL] [Abstract][Full Text] [Related]
16. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Carlberg B; Axell MZ; Nannmark U; Liu J; Kuhn HG Biomed Mater; 2009 Aug; 4(4):045004. PubMed ID: 19567936 [TBL] [Abstract][Full Text] [Related]
17. Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering. Rnjak-Kovacina J; Wise SG; Li Z; Maitz PK; Young CJ; Wang Y; Weiss AS Acta Biomater; 2012 Oct; 8(10):3714-22. PubMed ID: 22750739 [TBL] [Abstract][Full Text] [Related]
18. The use of air-flow impedance to control fiber deposition patterns during electrospinning. McClure MJ; Wolfe PS; Simpson DG; Sell SA; Bowlin GL Biomaterials; 2012 Jan; 33(3):771-9. PubMed ID: 22054536 [TBL] [Abstract][Full Text] [Related]
19. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering. Chung EJ; Sugimoto M; Koh JL; Ameer GA Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018 [TBL] [Abstract][Full Text] [Related]
20. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Kempf M; Miyamura Y; Liu PY; Chen AC; Nakamura H; Shimizu H; Tabata Y; Kimble RM; McMillan JR Biomaterials; 2011 Jul; 32(21):4782-92. PubMed ID: 21477857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]