These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 23560407)
21. The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts. Varkey M; Ding J; Tredget EE; Biomaterials; 2014 Dec; 35(36):9591-8. PubMed ID: 25176070 [TBL] [Abstract][Full Text] [Related]
22. Gradient porous fibrous scaffolds: a novel approach to improving cell penetration in electrospun scaffolds. Timnak A; Gerstenhaber JA; Dong K; Har-El YE; Lelkes PI Biomed Mater; 2018 Sep; 13(6):065010. PubMed ID: 30129563 [TBL] [Abstract][Full Text] [Related]
23. [Electrospinning technology in tissue engineering scaffolds]. Li H; Liu Y; He X; Ding Y; Yan H; Xie P; Yang W Sheng Wu Gong Cheng Xue Bao; 2012 Jan; 28(1):15-25. PubMed ID: 22667105 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of methods for the construction of collagenous scaffolds with a radial pore structure for tissue engineering. Brouwer KM; van Rensch P; Harbers VE; Geutjes PJ; Koens MJ; Wijnen RM; Daamen WF; van Kuppevelt TH J Tissue Eng Regen Med; 2011 Jun; 5(6):501-4. PubMed ID: 21604385 [TBL] [Abstract][Full Text] [Related]
25. Melt Electrospun Bilayered Scaffolds for Tissue Integration of a Suture-Less Inflow Cannula for Rotary Blood Pumps. Liao S; Theodoropoulos C; Blackwood KA; Woodruff MA; Gregory SD Artif Organs; 2018 May; 42(5):E43-E54. PubMed ID: 29235130 [TBL] [Abstract][Full Text] [Related]
26. Melt electrospinning and its technologization in tissue engineering. Muerza-Cascante ML; Haylock D; Hutmacher DW; Dalton PD Tissue Eng Part B Rev; 2015 Apr; 21(2):187-202. PubMed ID: 25341031 [TBL] [Abstract][Full Text] [Related]
27. The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study. Bai F; Wang Z; Lu J; Liu J; Chen G; Lv R; Wang J; Lin K; Zhang J; Huang X Tissue Eng Part A; 2010 Dec; 16(12):3791-803. PubMed ID: 20673021 [TBL] [Abstract][Full Text] [Related]
28. Electrospun nanofibrous 3D scaffold for bone tissue engineering. Eap S; Ferrand A; Palomares CM; Hébraud A; Stoltz JF; Mainard D; Schlatter G; Benkirane-Jessel N Biomed Mater Eng; 2012; 22(1-3):137-41. PubMed ID: 22766712 [TBL] [Abstract][Full Text] [Related]
29. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. Soliman S; Sant S; Nichol JW; Khabiry M; Traversa E; Khademhosseini A J Biomed Mater Res A; 2011 Mar; 96(3):566-74. PubMed ID: 21254388 [TBL] [Abstract][Full Text] [Related]
30. Applications of electrospun scaffolds with enlarged pores in tissue engineering. Zhang Y; Zhang M; Cheng D; Xu S; Du C; Xie L; Zhao W Biomater Sci; 2022 Mar; 10(6):1423-1447. PubMed ID: 35170597 [TBL] [Abstract][Full Text] [Related]
31. Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen. Sell S; Barnes C; Simpson D; Bowlin G J Biomed Mater Res A; 2008 Apr; 85(1):115-26. PubMed ID: 17688269 [TBL] [Abstract][Full Text] [Related]
32. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054 [TBL] [Abstract][Full Text] [Related]
33. Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique. Shabani I; Haddadi-Asl V; Seyedjafari E; Soleimani M Biochem Biophys Res Commun; 2012 Jun; 423(1):50-4. PubMed ID: 22618233 [TBL] [Abstract][Full Text] [Related]
34. Breast epithelial cell infiltration in enhanced electrospun silk scaffolds. Maghdouri-White Y; Elmore LW; Bowlin GL; Dréau D J Tissue Eng Regen Med; 2016 Feb; 10(2):E121-31. PubMed ID: 23798502 [TBL] [Abstract][Full Text] [Related]
35. Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter. Grey CP; Newton ST; Bowlin GL; Haas TW; Simpson DG Biomaterials; 2013 Jul; 34(21):4993-5006. PubMed ID: 23602367 [TBL] [Abstract][Full Text] [Related]
36. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Melchels FP; Barradas AM; van Blitterswijk CA; de Boer J; Feijen J; Grijpma DW Acta Biomater; 2010 Nov; 6(11):4208-17. PubMed ID: 20561602 [TBL] [Abstract][Full Text] [Related]
37. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Tutak W; Sarkar S; Lin-Gibson S; Farooque TM; Jyotsnendu G; Wang D; Kohn J; Bolikal D; Simon CG Biomaterials; 2013 Mar; 34(10):2389-98. PubMed ID: 23312903 [TBL] [Abstract][Full Text] [Related]
38. Synthetic scaffold morphology controls human dermal connective tissue formation. Wang H; Pieper J; Péters F; van Blitterswijk CA; Lamme EN J Biomed Mater Res A; 2005 Sep; 74(4):523-32. PubMed ID: 16028236 [TBL] [Abstract][Full Text] [Related]
39. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Yuan W; Feng Y; Wang H; Yang D; An B; Zhang W; Khan M; Guo J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3644-51. PubMed ID: 23910260 [TBL] [Abstract][Full Text] [Related]
40. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. McManus MC; Boland ED; Simpson DG; Barnes CP; Bowlin GL J Biomed Mater Res A; 2007 May; 81(2):299-309. PubMed ID: 17120217 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]