These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 23560413)

  • 1. Nanocomposites for bone tissue regeneration.
    Sahoo NG; Pan YZ; Li L; He CB
    Nanomedicine (Lond); 2013 Apr; 8(4):639-53. PubMed ID: 23560413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun fibrous scaffolds for bone and cartilage tissue generation: recent progress and future developments.
    Holmes B; Castro NJ; Zhang LG; Zussman E
    Tissue Eng Part B Rev; 2012 Dec; 18(6):478-86. PubMed ID: 22738358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering.
    Duan B; Wang M; Zhou WY; Cheung WL; Li ZY; Lu WW
    Acta Biomater; 2010 Dec; 6(12):4495-505. PubMed ID: 20601244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological and biophysical principles in extracorporal bone tissue engineering. Part II.
    Wiesmann HP; Joos U; Meyer U
    Int J Oral Maxillofac Surg; 2004 Sep; 33(6):523-30. PubMed ID: 15308249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of fibrin and fibrin composites for bone tissue engineering.
    Noori A; Ashrafi SJ; Vaez-Ghaemi R; Hatamian-Zaremi A; Webster TJ
    Int J Nanomedicine; 2017; 12():4937-4961. PubMed ID: 28761338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering.
    Zhang Y; Venugopal JR; El-Turki A; Ramakrishna S; Su B; Lim CT
    Biomaterials; 2008 Nov; 29(32):4314-22. PubMed ID: 18715637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic acetal hydroxyapatite nanocomposites for orbital bone regeneration.
    Patel M; Betz MW; Geibel E; Patel KJ; Caccamese JF; Coletti DP; Sauk JJ; Fisher JP
    Tissue Eng Part A; 2010 Jan; 16(1):55-65. PubMed ID: 19614544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Developments in Polymer Nanocomposites for Bone Regeneration.
    Abbas M; Alqahtani MS; Alhifzi R
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.
    Jeong HS; Venkatesan J; Kim SK
    Int J Biol Macromol; 2013 Jun; 57():138-41. PubMed ID: 23500439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of biocomposite materials for bone tissue regeneration.
    Yunus Basha R; Sampath Kumar TS; Doble M
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():452-63. PubMed ID: 26354284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous bioactive nanostructured scaffolds for bone regeneration: a sol-gel solution.
    Mahony O; Jones JR
    Nanomedicine (Lond); 2008 Apr; 3(2):233-45. PubMed ID: 18373428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering.
    Lee SH; Shin H
    Adv Drug Deliv Rev; 2007 May; 59(4-5):339-59. PubMed ID: 17499384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges.
    Baroli B
    J Pharm Sci; 2009 Apr; 98(4):1317-75. PubMed ID: 18729202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun materials as potential platforms for bone tissue engineering.
    Jang JH; Castano O; Kim HW
    Adv Drug Deliv Rev; 2009 Oct; 61(12):1065-83. PubMed ID: 19646493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone engineering of the rabbit ulna.
    El-Ghannam A; Cunningham L; Pienkowski D; Hart A
    J Oral Maxillofac Surg; 2007 Aug; 65(8):1495-502. PubMed ID: 17656274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-osteoblastic cell response on three-dimensional, organic-inorganic hybrid material scaffolds for bone tissue engineering.
    Terzaki K; Kissamitaki M; Skarmoutsou A; Fotakis C; Charitidis CA; Farsari M; Vamvakaki M; Chatzinikolaidou M
    J Biomed Mater Res A; 2013 Aug; 101(8):2283-94. PubMed ID: 23355483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.