These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23560875)

  • 1. An AUC-based permutation variable importance measure for random forests.
    Janitza S; Strobl C; Boulesteix AL
    BMC Bioinformatics; 2013 Apr; 14():119. PubMed ID: 23560875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations.
    Boulesteix AL; Bender A; Lorenzo Bermejo J; Strobl C
    Brief Bioinform; 2012 May; 13(3):292-304. PubMed ID: 21908865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The behaviour of random forest permutation-based variable importance measures under predictor correlation.
    Nicodemus KK; Malley JD; Strobl C; Ziegler A
    BMC Bioinformatics; 2010 Feb; 11():110. PubMed ID: 20187966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental study of the intrinsic stability of random forest variable importance measures.
    Wang H; Yang F; Luo Z
    BMC Bioinformatics; 2016 Feb; 17():60. PubMed ID: 26842629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictor correlation impacts machine learning algorithms: implications for genomic studies.
    Nicodemus KK; Malley JD
    Bioinformatics; 2009 Aug; 25(15):1884-90. PubMed ID: 19460890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AUC-RF: a new strategy for genomic profiling with random forest.
    Calle ML; Urrea V; Boulesteix AL; Malats N
    Hum Hered; 2011; 72(2):121-32. PubMed ID: 21996641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thresholding Gini variable importance with a single-trained random forest: An empirical Bayes approach.
    Dunne R; Reguant R; Ramarao-Milne P; Szul P; Sng LMF; Lundberg M; Twine NA; Bauer DC
    Comput Struct Biotechnol J; 2023; 21():4354-4360. PubMed ID: 37711185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensemble Pruning for Glaucoma Detection in an Unbalanced Data Set.
    Adler W; Gefeller O; Gul A; Horn FK; Khan Z; Lausen B
    Methods Inf Med; 2016 Dec; 55(6):557-563. PubMed ID: 27868133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intervention in prediction measure: a new approach to assessing variable importance for random forests.
    Epifanio I
    BMC Bioinformatics; 2017 May; 18(1):230. PubMed ID: 28464827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permutation-based inference for the AUC: A unified approach for continuous and discontinuous data.
    Pauly M; Asendorf T; Konietschke F
    Biom J; 2016 Nov; 58(6):1319-1337. PubMed ID: 27502845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the overestimation of random forest's out-of-bag error.
    Janitza S; Hornung R
    PLoS One; 2018; 13(8):e0201904. PubMed ID: 30080866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis.
    Ozçift A
    Comput Biol Med; 2011 May; 41(5):265-71. PubMed ID: 21419401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable importance and prediction methods for longitudinal problems with missing variables.
    Díaz I; Hubbard A; Decker A; Cohen M
    PLoS One; 2015; 10(3):e0120031. PubMed ID: 25815719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional permutation importance revisited.
    Debeer D; Strobl C
    BMC Bioinformatics; 2020 Jul; 21(1):307. PubMed ID: 32664864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tile-Based Random Forest Analysis for Analyte Discovery in Balanced and Unbalanced GC × GC-TOFMS Data Sets.
    Gaida M; Cain CN; Synovec RE; Focant JF; Stefanuto PH
    Anal Chem; 2023 Sep; 95(36):13519-13527. PubMed ID: 37647642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power of data mining methods to detect genetic associations and interactions.
    Molinaro AM; Carriero N; Bjornson R; Hartge P; Rothman N; Chatterjee N
    Hum Hered; 2011; 72(2):85-97. PubMed ID: 21934324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bias in random forest variable importance measures: illustrations, sources and a solution.
    Strobl C; Boulesteix AL; Zeileis A; Hothorn T
    BMC Bioinformatics; 2007 Jan; 8():25. PubMed ID: 17254353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling X Chromosome Data Using Random Forests: Conquering Sex Bias.
    Winham SJ; Jenkins GD; Biernacka JM
    Genet Epidemiol; 2016 Feb; 40(2):123-32. PubMed ID: 26639183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.