BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23561161)

  • 1. Effect of calcium on the kinetics of free fatty acid release during in vitro lipid digestion in model emulsions.
    Ye A; Cui J; Zhu X; Singh H
    Food Chem; 2013 Aug; 139(1-4):681-8. PubMed ID: 23561161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free fatty acid profiles of emulsified lipids during in vitro digestion with pancreatic lipase.
    Zhu X; Ye A; Verrier T; Singh H
    Food Chem; 2013 Aug; 139(1-4):398-404. PubMed ID: 23561123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics.
    Sarkar A; Zhang S; Holmes M; Ettelaie R
    Adv Colloid Interface Sci; 2019 Jan; 263():195-211. PubMed ID: 30580767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions.
    Tzoumaki MV; Moschakis T; Scholten E; Biliaderis CG
    Food Funct; 2013 Jan; 4(1):121-9. PubMed ID: 23064096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New mathematical model for interpreting pH-stat digestion profiles: impact of lipid droplet characteristics on in vitro digestibility.
    Li Y; McClements DJ
    J Agric Food Chem; 2010 Jul; 58(13):8085-92. PubMed ID: 20557040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of microparticulation and xanthan gum on the stability and lipid digestion of oil-in-water emulsions stabilized by whey protein.
    Sun C; Liu R; Sheng H; Wang R; Zhang Z; Zhao J; Zhang M
    Food Funct; 2018 Sep; 9(9):4683-4694. PubMed ID: 30090896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of interfacial composition on emulsion digestion and rate of lipid hydrolysis using different in vitro digestion models.
    Malaki Nik A; Wright AJ; Corredig M
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):321-30. PubMed ID: 21194901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions.
    Salvia-Trujillo L; Qian C; Martín-Belloso O; McClements DJ
    Food Chem; 2013 Nov; 141(2):1472-80. PubMed ID: 23790941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the particle size and hydrocolloid type on lipid digestion of thickened emulsions.
    Riquelme N; Robert P; Troncoso E; Arancibia C
    Food Funct; 2020 Jul; 11(7):5955-5964. PubMed ID: 32609135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of lipid physical state on the in vitro digestibility of emulsified lipids.
    Bonnaire L; Sandra S; Helgason T; Decker EA; Weiss J; McClements DJ
    J Agric Food Chem; 2008 May; 56(10):3791-7. PubMed ID: 18433107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro digestion of fish oils rich in n-3 polyunsaturated fatty acids studied in emulsion and at the oil-water interface.
    Marze S; Meynier A; Anton M
    Food Funct; 2013 Feb; 4(2):231-9. PubMed ID: 23086175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vitro Gastrointestinal Digestion of Palm Olein and Palm Stearin-in-Water Emulsions with Different Physical States and Fat Contents.
    Wan L; Li L; Harro JM; Hoag SW; Li B; Zhang X; Shirtliff ME
    J Agric Food Chem; 2020 Jul; 68(26):7062-7071. PubMed ID: 32496800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Gastrointestinal Digestibility of Crystalline Oil-in-Water Emulsions: Influence of Fat Crystal Structure.
    Jiao W; Li L; Yu A; Zhao D; Sheng B; Aikelamu M; Li B; Zhang X
    J Agric Food Chem; 2019 Jan; 67(3):927-934. PubMed ID: 30608158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of gastric digestive reaction on subsequent in vitro intestinal digestion of sodium caseinate-stabilized emulsions.
    Li J; Ye A; Lee SJ; Singh H
    Food Funct; 2012 Mar; 3(3):320-6. PubMed ID: 22234325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time measurements to characterize dynamics of emulsion interface during simulated intestinal digestion.
    Pan Y; Nitin N
    Colloids Surf B Biointerfaces; 2016 May; 141():233-241. PubMed ID: 26854582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oleogelation of emulsified oil delays in vitro intestinal lipid digestion.
    Guo Q; Wijarnprecha K; Sonwai S; Rousseau D
    Food Res Int; 2019 May; 119():805-812. PubMed ID: 30884719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Pickering Emulsions Stabilized by Gliadin/Proanthocyanidins Hybrid Particles (GPHPs) and the Fate of Lipid Oxidation and Digestion.
    Zhou FZ; Yan L; Yin SW; Tang CH; Yang XQ
    J Agric Food Chem; 2018 Feb; 66(6):1461-1471. PubMed ID: 29350533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid profiles of typical dietary lipids after gastrointestinal digestion and absorbtion: A combination study between in-vitro and in-vivo.
    Ye Z; Li R; Cao C; Xu YJ; Cao P; Li Q; Liu Y
    Food Chem; 2019 May; 280():34-44. PubMed ID: 30642504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of calcium on fatty acid bioaccessibility during in vitro digestion of Cheddar-type cheeses prepared with different milk fat fractions.
    Ayala-Bribiesca E; Turgeon SL; Britten M
    J Dairy Sci; 2017 Apr; 100(4):2454-2470. PubMed ID: 28189318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of interfacial and bulk properties of cellulose ethers on lipolysis of oil-in-water emulsions.
    Torcello-Gómez A; Foster TJ
    Carbohydr Polym; 2016 Jun; 144():495-503. PubMed ID: 27083841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.