These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23561176)

  • 1. Effect of flavonoid structure on the fluidity of model lipid membranes.
    Abram V; Berlec B; Ota A; Šentjurc M; Blatnik P; Ulrih NP
    Food Chem; 2013 Aug; 139(1-4):804-13. PubMed ID: 23561176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular binding of catechins to biomembranes: relationship to biological activity.
    Sirk TW; Brown EF; Friedman M; Sum AK
    J Agric Food Chem; 2009 Aug; 57(15):6720-8. PubMed ID: 19572638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of membrane lipid composition on flavonoid-membrane interactions: Implications on their biological activity.
    Selvaraj S; Krishnaswamy S; Devashya V; Sethuraman S; Krishnan UM
    Prog Lipid Res; 2015 Apr; 58():1-13. PubMed ID: 25479162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbing effects of carvedilol on a model membrane system: role of lipophilicity and chemical structure.
    Butler S; Wang R; Wunder SL; Cheng HY; Randall CS
    Biophys Chem; 2006 Feb; 119(3):307-15. PubMed ID: 16243429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Insulin-inducible structural reorganizations in the lipid bilayer of fatty tissue plasma membranes and their age-related characteristics].
    Egutkin GG; Gatsko GG
    Izv Akad Nauk SSSR Biol; 1991; (1):5-12. PubMed ID: 1856363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingomyelin composition and physical asymmetries in native acetylcholine receptor-rich membranes.
    Bonini IC; Antollini SS; Gutiérrez-Merino C; Barrantes FJ
    Eur Biophys J; 2002 Oct; 31(6):417-27. PubMed ID: 12355251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membranes are more mosaic than fluid.
    Engelman DM
    Nature; 2005 Dec; 438(7068):578-80. PubMed ID: 16319876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state NMR analysis of the orientation and dynamics of epigallocatechin gallate, a green tea polyphenol, incorporated into lipid bilayers.
    Kajiya K; Kumazawa S; Naito A; Nakayama T
    Magn Reson Chem; 2008 Feb; 46(2):174-7. PubMed ID: 18098154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the mechanism of antimicrobial conjugated polyelectrolytes: lipid headgroup charge and membrane fluidity effects.
    Ding L; Chi EY; Schanze KS; Lopez GP; Whitten DG
    Langmuir; 2010 Apr; 26(8):5544-50. PubMed ID: 20000327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of biphasic alterations on acetylcholinesterase (AChE) activity and membrane fluidity in the structure-functional effects of tetracaine on AChE-associated membrane vesicles.
    Chen CH; Zuklie BM; Roth LG
    Arch Biochem Biophys; 1998 Mar; 351(1):135-40. PubMed ID: 9500847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant pentacyclic triterpenic acids as modulators of lipid membrane physical properties.
    Prades J; Vögler O; Alemany R; Gomez-Florit M; Funari SS; Ruiz-Gutiérrez V; Barceló F
    Biochim Biophys Acta; 2011 Mar; 1808(3):752-60. PubMed ID: 21167812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position and orientation of gallated proanthocyanidins in lipid bilayer membranes: influence of polymerization degree and linkage type.
    Zhu W; Khalifa I; Peng J; Li C
    J Biomol Struct Dyn; 2018 Aug; 36(11):2862-2875. PubMed ID: 28844180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.
    Rebaud S; Maniti O; Girard-Egrot AP
    Biochimie; 2014 Dec; 107 Pt A():135-42. PubMed ID: 24998327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane lipids protected from oxidation by red wine tannins: a proton NMR study.
    Furlan AL; Jobin ML; Buchoux S; Grélard A; Dufourc EJ; Géan J
    Biochimie; 2014 Dec; 107 Pt A():82-90. PubMed ID: 25063276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane dipole modifiers modulate single-length nystatin channels via reducing elastic stress in the vicinity of the lipid mouth of a pore.
    Chulkov EG; Schagina LV; Ostroumova OS
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):192-9. PubMed ID: 25223717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conformational model for the action of general anesthetics at the membrane level. II. Experimental observations on the effects of anesthetics on lipid fluidity and lipid protein interactions.
    Lenaz G; Mazzanti L; Curatola G; Bertoli E; Bigi A; Zolese G
    Ital J Biochem; 1978; 27(6):401-30. PubMed ID: 755801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations on membrane perturbation by chrysin and its copper complex using self-assembled lipid bilayers.
    Selvaraj S; Krishnaswamy S; Devashya V; Sethuraman S; Krishnan UM
    Langmuir; 2011 Nov; 27(21):13374-82. PubMed ID: 21923196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carotenoids as modulators of lipid membrane physical properties.
    Gruszecki WI; Strzałka K
    Biochim Biophys Acta; 2005 May; 1740(2):108-15. PubMed ID: 15949676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics study on the biophysical interactions of seven green tea catechins with lipid bilayers of cell membranes.
    Sirk TW; Brown EF; Sum AK; Friedman M
    J Agric Food Chem; 2008 Sep; 56(17):7750-8. PubMed ID: 18672886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.