BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 23561506)

  • 1. N-doped porous carbon with magnetic particles formed in situ for enhanced Cr(VI) removal.
    Li Y; Zhu S; Liu Q; Chen Z; Gu J; Zhu C; Lu T; Zhang D; Ma J
    Water Res; 2013 Aug; 47(12):4188-97. PubMed ID: 23561506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite.
    Bhaumik M; Maity A; Srinivasu VV; Onyango MS
    J Hazard Mater; 2011 Jun; 190(1-3):381-90. PubMed ID: 21497438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution.
    Thinh NN; Hanh PT; Ha le TT; Anh le N; Hoang TV; Hoang VD; Dang le H; Khoi NV; Lam TD
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1214-8. PubMed ID: 23827563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan.
    Li L; Fan L; Sun M; Qiu H; Li X; Duan H; Luo C
    Colloids Surf B Biointerfaces; 2013 Jul; 107():76-83. PubMed ID: 23466545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-capacity adsorption of Cr(VI) from aqueous solution using a hierarchical porous carbon obtained from pig bone.
    Wei S; Li D; Huang Z; Huang Y; Wang F
    Bioresour Technol; 2013 Apr; 134():407-11. PubMed ID: 23489566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles.
    Chowdhury SR; Yanful EK; Pratt AR
    J Hazard Mater; 2012 Oct; 235-236():246-56. PubMed ID: 22902142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.
    Sun Y; Yue Q; Mao Y; Gao B; Gao Y; Huang L
    J Hazard Mater; 2014 Jan; 265():191-200. PubMed ID: 24361798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of Cr (VI) with wheat-residue derived black carbon: reaction mechanism and adsorption performance.
    Wang XS; Chen LF; Li FY; Chen KL; Wan WY; Tang YJ
    J Hazard Mater; 2010 Mar; 175(1-3):816-22. PubMed ID: 19926221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms.
    Deng S; Bai R
    Water Res; 2004 May; 38(9):2423-31. PubMed ID: 15142804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide.
    Shan C; Tong M
    Water Res; 2013 Jun; 47(10):3411-21. PubMed ID: 23587265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes' carbons.
    Bansal M; Singh D; Garg VK
    J Hazard Mater; 2009 Nov; 171(1-3):83-92. PubMed ID: 19553015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cr(VI) adsorption and reduction by humic acid coated on magnetite.
    Jiang W; Cai Q; Xu W; Yang M; Cai Y; Dionysiou DD; O'Shea KE
    Environ Sci Technol; 2014 Jul; 48(14):8078-85. PubMed ID: 24901955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Ce3+ doped ZnFe2O4 self-assembled clusters and adsorption of chromium(VI).
    Kuai S; Zhang Z; Nan Z
    J Hazard Mater; 2013 Apr; 250-251():229-37. PubMed ID: 23454462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: equilibrium and kinetic studies.
    Parida K; Mishra KG; Dash SK
    J Hazard Mater; 2012 Nov; 241-242():395-403. PubMed ID: 23092612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing.
    Dong X; Ma LQ; Li Y
    J Hazard Mater; 2011 Jun; 190(1-3):909-15. PubMed ID: 21550718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads.
    Li H; Li Z; Liu T; Xiao X; Peng Z; Deng L
    Bioresour Technol; 2008 Sep; 99(14):6271-9. PubMed ID: 18221868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process.
    Sahu JN; Acharya J; Meikap BC
    J Hazard Mater; 2009 Dec; 172(2-3):818-25. PubMed ID: 19748729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon.
    Hsu NH; Wang SL; Liao YH; Huang ST; Tzou YM; Huang YM
    J Hazard Mater; 2009 Nov; 171(1-3):1066-70. PubMed ID: 19619940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles.
    Yuan P; Liu D; Fan M; Yang D; Zhu R; Ge F; Zhu J; He H
    J Hazard Mater; 2010 Jan; 173(1-3):614-21. PubMed ID: 19748178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grape waste as a biosorbent for removing Cr(VI) from aqueous solution.
    Chand R; Narimura K; Kawakita H; Ohto K; Watari T; Inoue K
    J Hazard Mater; 2009 Apr; 163(1):245-50. PubMed ID: 18684562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.