These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23561527)

  • 1. Canonical azimuthal rotations and flanking residues constrain the orientation of transmembrane helices.
    Sánchez-Muñoz OL; Strandberg E; Esteban-Martín E; Grage SL; Ulrich AS; Salgado J
    Biophys J; 2013 Apr; 104(7):1508-16. PubMed ID: 23561527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation.
    Kim T; Im W
    Biophys J; 2010 Jul; 99(1):175-83. PubMed ID: 20655845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic mismatch of mobile transmembrane helices: Merging theory and experiments.
    Strandberg E; Esteban-Martín S; Ulrich AS; Salgado J
    Biochim Biophys Acta; 2012 May; 1818(5):1242-9. PubMed ID: 22326890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes.
    Krishnakumar SS; London E
    J Mol Biol; 2007 Nov; 374(3):671-87. PubMed ID: 17950311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of GWALP transmembrane peptides to changes in the tryptophan anchor positions.
    Vostrikov VV; Koeppe RE
    Biochemistry; 2011 Sep; 50(35):7522-35. PubMed ID: 21800919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpretation of 2H-NMR experiments on the orientation of the transmembrane helix WALP23 by computer simulations.
    Monticelli L; Tieleman DP; Fuchs PF
    Biophys J; 2010 Sep; 99(5):1455-64. PubMed ID: 20816057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparisons of interfacial Phe, Tyr, and Trp residues as determinants of orientation and dynamics for GWALP transmembrane peptides.
    Sparks KA; Gleason NJ; Gist R; Langston R; Greathouse DV; Koeppe RE
    Biochemistry; 2014 Jun; 53(22):3637-45. PubMed ID: 24829070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinctions between hydrophobic helices in globular proteins and transmembrane segments as factors in protein sorting.
    Cunningham F; Rath A; Johnson RM; Deber CM
    J Biol Chem; 2009 Feb; 284(8):5395-402. PubMed ID: 19095650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of lipid composition on the topography of membrane-associated hydrophobic helices: stabilization of transmembrane topography by anionic lipids.
    Shahidullah K; London E
    J Mol Biol; 2008 Jun; 379(4):704-18. PubMed ID: 18479706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of the orientation of transmembrane peptides using solid-state (2)H- and (15)N-NMR: mobility matters.
    Grage SL; Strandberg E; Wadhwani P; Esteban-Martín S; Salgado J; Ulrich AS
    Eur Biophys J; 2012 May; 41(5):475-82. PubMed ID: 22453992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+ -ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions.
    Lee AG
    Biochim Biophys Acta; 2002 Oct; 1565(2):246-66. PubMed ID: 12409199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coils in the membrane core are conserved and functionally important.
    Kauko A; Illergård K; Elofsson A
    J Mol Biol; 2008 Jun; 380(1):170-80. PubMed ID: 18511074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide mimics of the M13 coat protein transmembrane segment. Retention of helix-helix interaction motifs.
    Wang C; Deber CM
    J Biol Chem; 2000 May; 275(21):16155-9. PubMed ID: 10747951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic helical hairpins: design and packing interactions in membrane environments.
    Johnson RM; Heslop CL; Deber CM
    Biochemistry; 2004 Nov; 43(45):14361-9. PubMed ID: 15533040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helix perturbations in membrane proteins assist in inter-helical interactions and optimal helix positioning in the bilayer.
    Shelar A; Bansal M
    Biochim Biophys Acta; 2016 Nov; 1858(11):2804-2817. PubMed ID: 27521749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proline-induced hinges in transmembrane helices: possible roles in ion channel gating.
    Tieleman DP; Shrivastava IH; Ulmschneider MR; Sansom MS
    Proteins; 2001 Aug; 44(2):63-72. PubMed ID: 11391769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino-acid solvation structure in transmembrane helices from molecular dynamics simulations.
    Johansson AC; Lindahl E
    Biophys J; 2006 Dec; 91(12):4450-63. PubMed ID: 17012325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of interfacial tryptophan residues on an arginine-flanked transmembrane helix.
    Sustich SJ; Afrose F; Greathouse DV; Koeppe RE
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183134. PubMed ID: 31738898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of a terminal residue disrupts oligomerization of a transmembrane alpha-helix.
    Ng DP; Deber CM
    Biochem Cell Biol; 2010 Apr; 88(2):339-45. PubMed ID: 20453934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.