These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23561824)

  • 1. Force enhancement and force depression in a modified muscle model used for muscle activation prediction.
    Kosterina N; Wang R; Eriksson A; Gutierrez-Farewik EM
    J Electromyogr Kinesiol; 2013 Aug; 23(4):759-65. PubMed ID: 23561824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of maximum sprinting speed to characteristic parameters of the muscle force-velocity relationship.
    Miller RH; Umberger BR; Caldwell GE
    J Biomech; 2012 May; 45(8):1406-13. PubMed ID: 22405495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of residual force enhancement for multi-joint leg extension.
    Hahn D; Seiberl W; Schmidt S; Schweizer K; Schwirtz A
    J Biomech; 2010 May; 43(8):1503-8. PubMed ID: 20167325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force-velocity, force-power relationships of bilateral and unilateral leg multi-joint movements in young and elderly women.
    Yamauchi J; Mishima C; Nakayama S; Ishii N
    J Biomech; 2009 Sep; 42(13):2151-7. PubMed ID: 19647259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation.
    de Groot JH; Rozendaal LA; Meskers CG; Arwert HJ
    Clin Biomech (Bristol, Avon); 2004 Oct; 19(8):790-800. PubMed ID: 15342151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An equation to calculate individual muscle contributions to joint stability.
    Potvin JR; Brown SH
    J Biomech; 2005 May; 38(5):973-80. PubMed ID: 15797580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. I.3. Dynamics of human movement.
    Koopman BH
    Stud Health Technol Inform; 2010; 152():27-44. PubMed ID: 20407184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of knee model on estimates of muscle and joint forces in recumbent pedaling.
    Koehle MJ; Hull ML
    J Biomech Eng; 2010 Jan; 132(1):011007. PubMed ID: 20524745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An EMG-driven model applied for predicting metabolic energy consumption during movement.
    Bisi MC; Stagni R; Houdijk H; Gnudi G
    J Electromyogr Kinesiol; 2011 Dec; 21(6):1074-80. PubMed ID: 21840224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-based estimation of muscle forces exerted during movements.
    Erdemir A; McLean S; Herzog W; van den Bogert AJ
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):131-54. PubMed ID: 17070969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk.
    Kingma I; Staudenmann D; van Dieën JH
    J Electromyogr Kinesiol; 2007 Feb; 17(1):14-24. PubMed ID: 16531071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model.
    Jinha A; Ait-Haddou R; Herzog W
    J Biomech; 2006; 39(6):1145-52. PubMed ID: 16549102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Musculoskeletal shoulder models: a technical review and proposals for research foci.
    Prinold JA; Masjedi M; Johnson GR; Bull AM
    Proc Inst Mech Eng H; 2013 Oct; 227(10):1041-57. PubMed ID: 23851656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The expression of the skeletal muscle force-length relationship in vivo: a simulation study.
    Winter SL; Challis JH
    J Theor Biol; 2010 Feb; 262(4):634-43. PubMed ID: 19878685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are the maximum shortening velocity and the shape parameter in a Hill-type model of whole muscle related to activation?
    Camilleri MJ; Hull ML
    J Biomech; 2005 Nov; 38(11):2172-80. PubMed ID: 15992802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimization-based simultaneous approach to the determination of muscular, ligamentous, and joint contact forces provides insight into musculoligamentous interaction.
    Cleather DJ; Bull AM
    Ann Biomed Eng; 2011 Jul; 39(7):1925-34. PubMed ID: 21445690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional invariance during loading-related modulations of muscle activity: evidence for motor equivalence.
    Levin O; Wenderoth N; Steyvers M; Swinnen SP
    Exp Brain Res; 2003 Jan; 148(1):62-76. PubMed ID: 12478397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid static optimisation method to estimate muscle forces during muscle co-activation.
    Son J; Hwang S; Kim Y
    Comput Methods Biomech Biomed Engin; 2012; 15(3):249-54. PubMed ID: 21302162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of muscle strengthening on vertical jump height: a simulation study.
    Bobbert MF; Van Soest AJ
    Med Sci Sports Exerc; 1994 Aug; 26(8):1012-20. PubMed ID: 7968418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.