These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 23561824)
41. Foot and ankle forces during an automobile collision: the influence of muscles. Hardin EC; Su A; van den Bogert AJ J Biomech; 2004 May; 37(5):637-44. PubMed ID: 15046992 [TBL] [Abstract][Full Text] [Related]
42. A neuro-mechanical transducer model for controlling joint rotations and limb movements. Laczkó J; Kerry W; Rodolfo L Ideggyogy Sz; 2006 Jan; 59(1-2):32-43. PubMed ID: 16491570 [TBL] [Abstract][Full Text] [Related]
43. Mechanical work as predictor of force enhancement and force depression. Kosterina N; Westerblad H; Eriksson A J Biomech; 2009 Aug; 42(11):1628-34. PubMed ID: 19486981 [TBL] [Abstract][Full Text] [Related]
44. Acute effects of stretching on the neuromechanical properties of the triceps surae muscle complex. Cornwell A; Nelson AG; Sidaway B Eur J Appl Physiol; 2002 Mar; 86(5):428-34. PubMed ID: 11882929 [TBL] [Abstract][Full Text] [Related]
45. Sensitivity analysis of an energetic muscle model applied at whole body level in recumbent pedalling. Bisi MC; Stagni R; Gnudi G Comput Methods Biomech Biomed Engin; 2012; 15(5):527-38. PubMed ID: 21390932 [TBL] [Abstract][Full Text] [Related]
46. Function of mono- and biarticular muscles in running. Jacobs R; Bobbert MF; van Ingen Schenau GJ Med Sci Sports Exerc; 1993 Oct; 25(10):1163-73. PubMed ID: 8231762 [TBL] [Abstract][Full Text] [Related]
47. An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces. Vilimek M Acta Bioeng Biomech; 2014; 16(3):119-27. PubMed ID: 25307446 [TBL] [Abstract][Full Text] [Related]
48. Force recovery after activated shortening in whole skeletal muscle: transient and steady-state aspects of force depression. Corr DT; Herzog W J Appl Physiol (1985); 2005 Jul; 99(1):252-60. PubMed ID: 15746298 [TBL] [Abstract][Full Text] [Related]
49. The influence of an elastic tendon on the force producing capabilities of a muscle during dynamic movements. Domire ZJ; Challis JH Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):337-41. PubMed ID: 17852179 [TBL] [Abstract][Full Text] [Related]
50. Validation of a musculo-skeletal model of the mandible and its application to mandibular distraction osteogenesis. de Zee M; Dalstra M; Cattaneo PM; Rasmussen J; Svensson P; Melsen B J Biomech; 2007; 40(6):1192-201. PubMed ID: 16930608 [TBL] [Abstract][Full Text] [Related]
51. Surface EMG force modeling with joint angle based calibration. Hashemi J; Morin E; Mousavi P; Hashtrudi-Zaad K J Electromyogr Kinesiol; 2013 Apr; 23(2):416-24. PubMed ID: 23273763 [TBL] [Abstract][Full Text] [Related]
52. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations. Borbély BJ; Szolgay P Biomed Eng Online; 2017 Jan; 16(1):21. PubMed ID: 28095857 [TBL] [Abstract][Full Text] [Related]
53. CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks. Pizzolato C; Lloyd DG; Sartori M; Ceseracciu E; Besier TF; Fregly BJ; Reggiani M J Biomech; 2015 Nov; 48(14):3929-36. PubMed ID: 26522621 [TBL] [Abstract][Full Text] [Related]
54. The Effects of Filter Cutoff Frequency on Musculoskeletal Simulations of High-Impact Movements. Tomescu SS; Bakker R; Beach TAC; Chandrashekar N J Appl Biomech; 2018 Aug; 34(4):336-341. PubMed ID: 29431559 [TBL] [Abstract][Full Text] [Related]
55. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB. Mansouri M; Reinbolt JA J Biomech; 2012 May; 45(8):1517-21. PubMed ID: 22464351 [TBL] [Abstract][Full Text] [Related]
56. A phenomenological model and validation of shortening-induced force depression during muscle contractions. McGowan CP; Neptune RR; Herzog W J Biomech; 2010 Feb; 43(3):449-54. PubMed ID: 19879585 [TBL] [Abstract][Full Text] [Related]
57. Inverse dynamic optimization including muscular dynamics, a new simulation method applied to goal directed movements. Happee R J Biomech; 1994 Jul; 27(7):953-60. PubMed ID: 8063845 [TBL] [Abstract][Full Text] [Related]
58. A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach. Ehsani H; Rostami M; Gudarzi M Comput Methods Biomech Biomed Engin; 2016 Feb; 19(3):306-319. PubMed ID: 25761607 [TBL] [Abstract][Full Text] [Related]
59. Prediction of ground reaction forces and moments during various activities of daily living. Fluit R; Andersen MS; Kolk S; Verdonschot N; Koopman HF J Biomech; 2014 Jul; 47(10):2321-9. PubMed ID: 24835471 [TBL] [Abstract][Full Text] [Related]
60. Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models. Halloran JP; Erdemir A; van den Bogert AJ J Biomech Eng; 2009 Jan; 131(1):011014. PubMed ID: 19045930 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]