These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23562097)

  • 21. Gestational Chronodisruption Impairs Circadian Physiology in Rat Male Offspring, Increasing the Risk of Chronic Disease.
    Mendez N; Halabi D; Spichiger C; Salazar ER; Vergara K; Alonso-Vasquez P; Carmona P; Sarmiento JM; Richter HG; Seron-Ferre M; Torres-Farfan C
    Endocrinology; 2016 Dec; 157(12):4654-4668. PubMed ID: 27802074
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoperiodic lighting (16 hours of light:8 hours of dark) programs during incubation: 2. Effects on early posthatching growth, blood physiology, and production performance in broiler chickens in relation to posthatching lighting programs.
    Ozkan S; Yalçin S; Babacanoglu E; Uysal S; Karadas F; Kozanoglu H
    Poult Sci; 2012 Nov; 91(11):2922-30. PubMed ID: 23091151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of different lighting regimes on daily hormonal and behavioural rhythms in the pregnant ewe and sheep fetus.
    McMillen IC; Walker DW
    J Physiol; 1991 Oct; 442():465-76. PubMed ID: 1798036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endocrine and cardiovascular rhythms differentially adapt to chronic phase-delay shifts in rats.
    Zeman M; Molcan L; Herichova I; Okuliarova M
    Chronobiol Int; 2016; 33(9):1148-1160. PubMed ID: 27459109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constant light and dark affect the circadian rhythm of the hypothalamic-pituitary-adrenal axis.
    Fischman AJ; Kastin AJ; Graf MV; Moldow RL
    Neuroendocrinology; 1988 Apr; 47(4):309-16. PubMed ID: 2836747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effects of chronic stress depression on the circadian rhythm of peripheral neuroendocrine hormone of rats].
    Zhao Y; Fu Y
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2017 May; 33(5):398-402. PubMed ID: 29926582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of metabolic cage housing on immunoglobulin A and corticosterone excretion in faeces and urine of young male rats.
    Eriksson E; Royo F; Lyberg K; Carlsson HE; Hau J
    Exp Physiol; 2004 Jul; 89(4):427-33. PubMed ID: 15131075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime.
    Challet E; Pévet P; Vivien-Roels B; Malan A
    J Biol Rhythms; 1997 Feb; 12(1):65-79. PubMed ID: 9104691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light.
    Mendez N; Abarzua-Catalan L; Vilches N; Galdames HA; Spichiger C; Richter HG; Valenzuela GJ; Seron-Ferre M; Torres-Farfan C
    PLoS One; 2012; 7(8):e42713. PubMed ID: 22912724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoperiodic lighting (16 hours of light:8 hours of dark) programs during incubation: 1. Effects on growth and circadian physiological traits of embryos and early stress response of broiler chickens.
    Ozkan S; Yalçin S; Babacanoglu E; Kozanoglu H; Karadas F; Uysal S
    Poult Sci; 2012 Nov; 91(11):2912-21. PubMed ID: 23091150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal.
    Xiang S; Dauchy RT; Hauch A; Mao L; Yuan L; Wren MA; Belancio VP; Mondal D; Frasch T; Blask DE; Hill SM
    J Pineal Res; 2015 Aug; 59(1):60-9. PubMed ID: 25857269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exposure to chronic light-dark phase shifts during the prepartum nonlactating period attenuates circadian rhythms, decreases blood glucose, and increases milk yield in the subsequent lactation.
    Suarez-Trujillo A; Wernert G; Sun H; Steckler TS; Huff K; Cummings S; Franco J; Klopp RN; Townsend JR; Grott M; Johnson JS; Plaut K; Boerman JP; Casey TM
    J Dairy Sci; 2020 Mar; 103(3):2784-2799. PubMed ID: 31980225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutual influence of rats having different circadian rhythm of adrenocortical activity.
    Takahashi K; Inoue K; Kobayashi K; Hayafuji C; Nakamura Y; Takahashi Y
    Am J Physiol; 1978 May; 234(5):E505-20. PubMed ID: 645902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light intensity and the control of melatonin secretion in rats.
    Lynch HJ; Rivest RW; Ronsheim PM; Wurtman RJ
    Neuroendocrinology; 1981 Sep; 33(3):181-5. PubMed ID: 7197332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artificial lighting conditions and melatonin alter motor performance in adult rats.
    Poulos SG; Borlongan CV
    Neurosci Lett; 2000 Feb; 280(1):33-6. PubMed ID: 10696805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue.
    Pauley SM
    Med Hypotheses; 2004; 63(4):588-96. PubMed ID: 15325001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dim light at night disrupts molecular circadian rhythms and increases body weight.
    Fonken LK; Aubrecht TG; Meléndez-Fernández OH; Weil ZM; Nelson RJ
    J Biol Rhythms; 2013 Aug; 28(4):262-71. PubMed ID: 23929553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of light at night on laboratory animals and research outcomes.
    Emmer KM; Russart KLG; Walker WH; Nelson RJ; DeVries AC
    Behav Neurosci; 2018 Aug; 132(4):302-314. PubMed ID: 29952608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Entraining effects of variations in light spectral composition on the rest-activity rhythm of a nocturnal rodent.
    de Oliveira MAB; Scop M; Abreu ACO; Sanches PRS; Rossi AC; Díez-Noguera A; Calcagnotto ME; Hidalgo MP
    Chronobiol Int; 2019 Jul; 36(7):934-944. PubMed ID: 31056973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in photoperiod alter the daily rhythms of pineal melatonin content and hypothalamic beta-endorphin content and the luteinizing hormone response to naloxone in the male Syrian hamster.
    Roberts AC; Martensz ND; Hastings MH; Herbert J
    Endocrinology; 1985 Jul; 117(1):141-8. PubMed ID: 3159563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.