These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 23562305)

  • 1. Forebrain networks and the control of feeding by environmental learned cues.
    Petrovich GD
    Physiol Behav; 2013 Sep; 121():10-8. PubMed ID: 23562305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning and the motivation to eat: forebrain circuitry.
    Petrovich GD
    Physiol Behav; 2011 Sep; 104(4):582-9. PubMed ID: 21549730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forebrain circuits and control of feeding by learned cues.
    Petrovich GD
    Neurobiol Learn Mem; 2011 Feb; 95(2):152-8. PubMed ID: 20965265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medial Prefrontal Cortex Neural Plasticity, Orexin Receptor 1 Signaling, and Connectivity with the Lateral Hypothalamus Are Necessary in Cue-Potentiated Feeding.
    Cole S; Keefer SE; Anderson LC; Petrovich GD
    J Neurosci; 2020 Feb; 40(8):1744-1755. PubMed ID: 31953368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of food consumption by learned cues: a forebrain-hypothalamic network.
    Petrovich GD; Gallagher M
    Physiol Behav; 2007 Jul; 91(4):397-403. PubMed ID: 17498758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central, but not basolateral, amygdala is critical for control of feeding by aversive learned cues.
    Petrovich GD; Ross CA; Mody P; Holland PC; Gallagher M
    J Neurosci; 2009 Dec; 29(48):15205-12. PubMed ID: 19955373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orexin/Hypocretin-1 Receptor Antagonism Selectively Reduces Cue-Induced Feeding in Sated Rats and Recruits Medial Prefrontal Cortex and Thalamus.
    Cole S; Mayer HS; Petrovich GD
    Sci Rep; 2015 Nov; 5():16143. PubMed ID: 26536818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amygdala subsystems and control of feeding behavior by learned cues.
    Petrovich GD; Gallagher M
    Ann N Y Acad Sci; 2003 Apr; 985():251-62. PubMed ID: 12724163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of reward and prefrontal circuitry in hunger and satiety: Prader-Willi syndrome vs simple obesity.
    Holsen LM; Savage CR; Martin LE; Bruce AS; Lepping RJ; Ko E; Brooks WM; Butler MG; Zarcone JR; Goldstein JM
    Int J Obes (Lond); 2012 May; 36(5):638-47. PubMed ID: 22024642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amygdalo-hypothalamic circuit allows learned cues to override satiety and promote eating.
    Petrovich GD; Setlow B; Holland PC; Gallagher M
    J Neurosci; 2002 Oct; 22(19):8748-53. PubMed ID: 12351750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ghrelin: A link between memory and ingestive behavior.
    Hsu TM; Suarez AN; Kanoski SE
    Physiol Behav; 2016 Aug; 162():10-7. PubMed ID: 27072509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of reward signalling and appetite regulating peptide systems in the control of food-cue responses.
    Reichelt AC; Westbrook RF; Morris MJ
    Br J Pharmacol; 2015 Nov; 172(22):5225-38. PubMed ID: 26403657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neural systems analysis of the potentiation of feeding by conditioned stimuli.
    Holland PC; Petrovich GD
    Physiol Behav; 2005 Dec; 86(5):747-61. PubMed ID: 16256152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reframing appetitive reinforcement learning and reward valuation as effects mediated by hippocampal-dependent behavioral inhibition.
    Jones S; Hyde A; Davidson TL
    Nutr Res; 2020 Jul; 79():1-12. PubMed ID: 32544728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating.
    Petrovich GD; Holland PC; Gallagher M
    J Neurosci; 2005 Sep; 25(36):8295-302. PubMed ID: 16148237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Appetitive associative learning recruits a distinct network with cortical, striatal, and hypothalamic regions.
    Cole S; Hobin MP; Petrovich GD
    Neuroscience; 2015 Feb; 286():187-202. PubMed ID: 25463526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Hunger and satiety factors in the regulation of pleasure associated with feeding behavior].
    Fetissov SO
    Biol Aujourdhui; 2016; 210(4):259-268. PubMed ID: 28327283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of Melanin Concentrating Hormone Receptor-1 disrupts overeating in the presence of food cues.
    Sherwood A; Holland PC; Adamantidis A; Johnson AW
    Physiol Behav; 2015 Dec; 152(Pt B):402-7. PubMed ID: 26048303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hedonic Eating and the "Delicious Circle": From Lipid-Derived Mediators to Brain Dopamine and Back.
    Coccurello R; Maccarrone M
    Front Neurosci; 2018; 12():271. PubMed ID: 29740277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of non-homeostatic feeding in sated mice using associative learning of contextual food cues.
    Stern SA; Doerig KR; Azevedo EP; Stoffel E; Friedman JM
    Mol Psychiatry; 2020 Mar; 25(3):666-679. PubMed ID: 29875477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.