These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23562492)

  • 1. Comparison between piezoelectric material properties obtained by using low-voltage magnitude frequency sweeping and high-level short impulse signals.
    Petošić A; Budimir M; Pavlović N
    Ultrasonics; 2013 Aug; 53(6):1192-9. PubMed ID: 23562492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of elastic, dielectric, and piezoelectric constants in piezoceramic disks.
    Perez N; Andrade MA; Buiochi F; Adamowski JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2772-83. PubMed ID: 21156373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Q-Factor Spectrum of a Piezoceramic Resonator and Method for Piezoelectric Loss Factor Determination.
    Mezheritsky A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Dec; 64(12):1849-1856. PubMed ID: 28880171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic, dielectric, and piezoelectric losses in piezoceramics: how it works all together.
    Mezheritsky AV
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):695-707. PubMed ID: 15244283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative performance of piezoceramic and crystal SAW filters.
    Feuillard G; Lethieccl M; Janin Y; Tessier L; Pourcelot L
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):194-200. PubMed ID: 18244117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the Characterization of the Losses in Piezoelectric Materials from Impedance Spectroscopy at Resonance.
    González AM; García Á; Benavente-Peces C; Pardo L
    Materials (Basel); 2016 Jan; 9(2):. PubMed ID: 28787872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element modelling of dense and porous piezoceramic disc hydrophones.
    Ramesh R; Kara H; Bowen CR
    Ultrasonics; 2005 Jan; 43(3):173-81. PubMed ID: 15556652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-frequency resonant characteristics of triple-layered piezoceramic bimorphs determined using experimental measurements and theoretical analysis.
    Huang YH; Ma CC; Chao CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1219-32. PubMed ID: 22718872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of excitation of piezoceramic transducers at antiresonance frequency.
    Mezheritsky AV
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Apr; 49(4):484-94. PubMed ID: 11989704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FEM-Based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials.
    Lahmer T; Kaltenbacher M; Kaltenbacher B; Lerch R; Leder E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):465-75. PubMed ID: 18334352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of piezoceramic rectangular parallelepipeds by means of a two-dimensional model.
    Lamberti N; de Espinosa FR; Iula A; Carotenuto R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):113-20. PubMed ID: 11367778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Radial Electric Field Excited Circular Disk Piezoceramic Acoustic Resonator and Its Properties.
    Teplykh A; Zaitsev B; Semyonov A; Borodina I
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A FEM-based method to determine the complex material properties of piezoelectric disks.
    Pérez N; Carbonari RC; Andrade MA; Buiochi F; Adamowski JC
    Ultrasonics; 2014 Aug; 54(6):1631-41. PubMed ID: 24735932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A FEM-based method using harmonic overtones to determine the effective elastic, dielectric, and piezoelectric parameters of freely vibrating thick piezoelectric disks.
    Jonsson UG; Andersson BM; Lindahl OA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):243-55. PubMed ID: 23287929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of losses in five piezoelectric ceramics between 2 and 50 MHz.
    Lethiecq M; Patat F; Pourcelot L; Tran-Huu-Hue LP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(3):232-7. PubMed ID: 18263177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and numerical investigations of vibration characteristics for parallel-type and series-type triple-layered piezoceramic bimorphs.
    Huang YH; Ma CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2598-611. PubMed ID: 20040397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the mechanical nonlinear behavior of piezoelectric ceramics.
    Albareda A; Gonnard P; Perrin V; Briot R; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):844-53. PubMed ID: 18238617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiple degree of freedom electromechanical Helmholtz resonator.
    Liu F; Horowitz S; Nishida T; Cattafesta L; Sheplak M
    J Acoust Soc Am; 2007 Jul; 122(1):291-301. PubMed ID: 17614489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.