These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23562792)

  • 1. The role of angiogenic and wound-healing factors after spinal cord injury in mammals.
    Kundi S; Bicknell R; Ahmed Z
    Neurosci Res; 2013; 76(1-2):1-9. PubMed ID: 23562792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential cavitation, angiogenesis and wound-healing responses in injured mouse and rat spinal cords.
    Surey S; Berry M; Logan A; Bicknell R; Ahmed Z
    Neuroscience; 2014 Sep; 275():62-80. PubMed ID: 24929066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration.
    Zhang Z; Guth L
    Exp Neurol; 1997 Sep; 147(1):159-71. PubMed ID: 9294413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Schwann cell and olfactory ensheathing cell implantation for repair of the contused spinal cord.
    Oudega M
    Acta Physiol (Oxf); 2007 Feb; 189(2):181-9. PubMed ID: 17250568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury.
    Kitamura K; Iwanami A; Nakamura M; Yamane J; Watanabe K; Suzuki Y; Miyazawa D; Shibata S; Funakoshi H; Miyatake S; Coffin RS; Nakamura T; Toyama Y; Okano H
    J Neurosci Res; 2007 Aug; 85(11):2332-42. PubMed ID: 17549731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutralization of the chemokine CXCL10 enhances tissue sparing and angiogenesis following spinal cord injury.
    Glaser J; Gonzalez R; Perreau VM; Cotman CW; Keirstead HS
    J Neurosci Res; 2004 Sep; 77(5):701-8. PubMed ID: 15352216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair and neurorehabilitation strategies for spinal cord injury.
    Ruff RL; McKerracher L; Selzer ME
    Ann N Y Acad Sci; 2008 Oct; 1142():1-20. PubMed ID: 18990118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regenerating and sprouting axons differ in their requirements for growth after injury.
    Bernstein-Goral H; Diener PS; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):51-72. PubMed ID: 9398450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury.
    Jaerve A; Schiwy N; Schmitz C; Mueller HW
    Exp Neurol; 2011 Oct; 231(2):284-94. PubMed ID: 21806987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axon regeneration through scars and into sites of chronic spinal cord injury.
    Lu P; Jones LL; Tuszynski MH
    Exp Neurol; 2007 Jan; 203(1):8-21. PubMed ID: 17014846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traumatic spinal cord injury alters angiogenic factors and TGF-beta1 that may affect vascular recovery.
    Ritz MF; Graumann U; Gutierrez B; Hausmann O
    Curr Neurovasc Res; 2010 Nov; 7(4):301-10. PubMed ID: 20860549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endogenous repair after spinal cord contusion injuries in the rat.
    Beattie MS; Bresnahan JC; Komon J; Tovar CA; Van Meter M; Anderson DK; Faden AI; Hsu CY; Noble LJ; Salzman S; Young W
    Exp Neurol; 1997 Dec; 148(2):453-63. PubMed ID: 9417825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix.
    Li J; Zhang YP; Kirsner RS
    Microsc Res Tech; 2003 Jan; 60(1):107-14. PubMed ID: 12500267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury.
    Kumagai G; Tsoulfas P; Toh S; McNiece I; Bramlett HM; Dietrich WD
    Exp Neurol; 2013 Oct; 248():369-80. PubMed ID: 23856436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multifunctional neurotrophin with reduced affinity to p75NTR enhances transplanted Schwann cell survival and axon growth after spinal cord injury.
    Enomoto M; Bunge MB; Tsoulfas P
    Exp Neurol; 2013 Oct; 248():170-82. PubMed ID: 23792206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the platelet derived wound healing formula and the nerve growth factor on the experimentally injured spinal cord.
    Hiraizumi Y; Fujimaki E; Transfeldt EE; Kawahara N; Fiegel VD; Knighton D; Sung JH
    Spinal Cord; 1996 Jul; 34(7):394-402. PubMed ID: 8963994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A re-assessment of the effects of treatment with a non-steroidal anti-inflammatory (ibuprofen) on promoting axon regeneration via RhoA inhibition after spinal cord injury.
    Sharp KG; Yee KM; Stiles TL; Aguilar RM; Steward O
    Exp Neurol; 2013 Oct; 248():321-37. PubMed ID: 23830951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agmatine-reduced collagen scar area accompanied with surface righting reflex recovery after complete transection spinal cord injury.
    Kim JH; Lee YW; Park YM; Park KA; Park SH; Lee WT; Lee JE
    Spine (Phila Pa 1976); 2011 Dec; 36(25):2130-8. PubMed ID: 21325984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.