These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23562792)

  • 21. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [FGF-2-treatment improves locomotor function via axonal regeneration in the transected rat spinal cord].
    Furukawa S; Furukawa Y
    Brain Nerve; 2007 Dec; 59(12):1333-9. PubMed ID: 18095482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bridge over troubled waters.
    Campos L; Ambron RT; Martin JH
    Neuroreport; 2004 Dec; 15(18):2691-4. PubMed ID: 15597036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of inflammatory response associated with traumatic spinal cord injury in cutaneous wound healing and on expression of transforming growth factor-beta1 (TGF-beta1) and platelet-derived growth factor (PDGF)-A at the wound site in rats.
    Konya D; Gercek A; Akakin A; Akakin D; Tural S; Cetinel S; Ozgen S; Pamir MN
    Growth Factors; 2008 Apr; 26(2):74-9. PubMed ID: 18428026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Major vault protein promotes locomotor recovery and regeneration after spinal cord injury in adult zebrafish.
    Pan HC; Lin JF; Ma LP; Shen YQ; Schachner M
    Eur J Neurosci; 2013 Jan; 37(2):203-11. PubMed ID: 23106570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury.
    Zhu Y; Soderblom C; Krishnan V; Ashbaugh J; Bethea JR; Lee JK
    Neurobiol Dis; 2015 Feb; 74():114-25. PubMed ID: 25461258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental Strategies to Bridge Large Tissue Gaps in the Injured Spinal Cord after Acute and Chronic Lesion.
    Brazda N; Estrada V; Voss C; Seide K; Trieu HK; Müller HW
    J Vis Exp; 2016 Apr; (110):e53331. PubMed ID: 27077921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chondroitinase ABC promotes functional recovery after spinal cord injury.
    Bradbury EJ; Moon LD; Popat RJ; King VR; Bennett GS; Patel PN; Fawcett JW; McMahon SB
    Nature; 2002 Apr; 416(6881):636-40. PubMed ID: 11948352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of thrombospondin-1 and transforming growth factor-beta after spinal cord injury in the rat.
    Wang X; Chen W; Liu W; Wu J; Shao Y; Zhang X
    J Clin Neurosci; 2009 Jun; 16(6):818-21. PubMed ID: 19342245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inflammatory pathways in spinal cord injury.
    David S; Zarruk JG; Ghasemlou N
    Int Rev Neurobiol; 2012; 106():127-52. PubMed ID: 23211462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trophic factor modulation of c-Jun expression in supraspinal neurons after chronic spinal cord injury.
    Houle JD; Schramm P; Herdegen T
    Exp Neurol; 1998 Dec; 154(2):602-11. PubMed ID: 9878195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic influences on secondary degeneration and wound healing following spinal cord injury in various strains of mice.
    Inman D; Guth L; Steward O
    J Comp Neurol; 2002 Sep; 451(3):225-35. PubMed ID: 12210135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.
    Vangansewinkel T; Geurts N; Quanten K; Nelissen S; Lemmens S; Geboes L; Dooley D; Vidal PM; Pejler G; Hendrix S
    FASEB J; 2016 May; 30(5):2040-57. PubMed ID: 26917739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury.
    Chu GK; Yu W; Fehlings MG
    Neuroscience; 2007 Sep; 148(3):668-82. PubMed ID: 17706365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury.
    Pearse DD; Pereira FC; Marcillo AE; Bates ML; Berrocal YA; Filbin MT; Bunge MB
    Nat Med; 2004 Jun; 10(6):610-6. PubMed ID: 15156204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. IL-6 promotes regeneration and functional recovery after cortical spinal tract injury by reactivating intrinsic growth program of neurons and enhancing synapse formation.
    Yang P; Wen H; Ou S; Cui J; Fan D
    Exp Neurol; 2012 Jul; 236(1):19-27. PubMed ID: 22504113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Necessity for re-vascularization after spinal cord injury and the search for potential therapeutic options.
    Graumann U; Ritz MF; Hausmann O
    Curr Neurovasc Res; 2011 Nov; 8(4):334-41. PubMed ID: 22023610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis).
    Azar DT
    Trans Am Ophthalmol Soc; 2006; 104():264-302. PubMed ID: 17471348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The neuroprotective effects of Reg-2 following spinal cord transection injury.
    Fang M; Wang J; Huang JY; Ling SC; Rudd JA; Hu ZY; Yew DT; Han S
    Anat Rec (Hoboken); 2011 Jan; 294(1):24-45. PubMed ID: 21157914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.