These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 23562821)

  • 1. Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression.
    Kanagawa M; Yu CC; Ito C; Fukada S; Hozoji-Inada M; Chiyo T; Kuga A; Matsuo M; Sato K; Yamaguchi M; Ito T; Ohtsuka Y; Katanosaka Y; Miyagoe-Suzuki Y; Naruse K; Kobayashi K; Okada T; Takeda S; Toda T
    Hum Mol Genet; 2013 Aug; 22(15):3003-15. PubMed ID: 23562821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fukutin is prerequisite to ameliorate muscular dystrophic phenotype by myofiber-selective LARGE expression.
    Ohtsuka Y; Kanagawa M; Yu CC; Ito C; Chiyo T; Kobayashi K; Okada T; Takeda S; Toda T
    Sci Rep; 2015 Feb; 5():8316. PubMed ID: 25661440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy.
    Foltz SJ; Luan J; Call JA; Patel A; Peissig KB; Fortunato MJ; Beedle AM
    Skelet Muscle; 2016; 6():20. PubMed ID: 27257474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy.
    Kanagawa M; Nishimoto A; Chiyonobu T; Takeda S; Miyagoe-Suzuki Y; Wang F; Fujikake N; Taniguchi M; Lu Z; Tachikawa M; Nagai Y; Tashiro F; Miyazaki J; Tajima Y; Takeda S; Endo T; Kobayashi K; Campbell KP; Toda T
    Hum Mol Genet; 2009 Feb; 18(4):621-31. PubMed ID: 19017726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of LARGE suppresses muscle regeneration via down-regulation of insulin-like growth factor 1 and aggravates muscular dystrophy in mice.
    Saito F; Kanagawa M; Ikeda M; Hagiwara H; Masaki T; Ohkuma H; Katanosaka Y; Shimizu T; Sonoo M; Toda T; Matsumura K
    Hum Mol Genet; 2014 Sep; 23(17):4543-58. PubMed ID: 24722207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal requirement of dystroglycan glycosylation during brain development and rescue of severe cortical dysplasia via gene delivery in the fetal stage.
    Sudo A; Kanagawa M; Kondo M; Ito C; Kobayashi K; Endo M; Minami Y; Aiba A; Toda T
    Hum Mol Genet; 2018 Apr; 27(7):1174-1185. PubMed ID: 29360985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of dysferlin deficiency to skeletal muscle pathology in asymptomatic and severe dystroglycanopathy models: generation of a new model for Fukuyama congenital muscular dystrophy.
    Kanagawa M; Lu Z; Ito C; Matsuda C; Miyake K; Toda T
    PLoS One; 2014; 9(9):e106721. PubMed ID: 25198651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fukutin expression in mouse non-muscle somatic organs: its relationship to the hypoglycosylation of alpha-dystroglycan in Fukuyama-type congenital muscular dystrophy.
    Saito Y; Yamamoto T; Ohtsuka-Tsurumi E; Oka A; Mizuguchi M; Itoh M; Voit T; Kato Y; Kobayashi M; Saito K; Osawa M
    Brain Dev; 2004 Oct; 26(7):469-79. PubMed ID: 15351084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Alpha-dystroglycanopathy (FCMD, MEB, etc): abnormal glycosylation and muscular dystrophy].
    Toda T
    Rinsho Shinkeigaku; 2005 Nov; 45(11):932-4. PubMed ID: 16447766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy.
    Beedle AM; Turner AJ; Saito Y; Lueck JD; Foltz SJ; Fortunato MJ; Nienaber PM; Campbell KP
    J Clin Invest; 2012 Sep; 122(9):3330-42. PubMed ID: 22922256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies.
    Chan YM; Keramaris-Vrantsis E; Lidov HG; Norton JH; Zinchenko N; Gruber HE; Thresher R; Blake DJ; Ashar J; Rosenfeld J; Lu QL
    Hum Mol Genet; 2010 Oct; 19(20):3995-4006. PubMed ID: 20675713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant neuromuscular junctions and delayed terminal muscle fiber maturation in alpha-dystroglycanopathies.
    Taniguchi M; Kurahashi H; Noguchi S; Fukudome T; Okinaga T; Tsukahara T; Tajima Y; Ozono K; Nishino I; Nonaka I; Toda T
    Hum Mol Genet; 2006 Apr; 15(8):1279-89. PubMed ID: 16531417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscular Dystrophy with Ribitol-Phosphate Deficiency: A Novel Post-Translational Mechanism in Dystroglycanopathy.
    Kanagawa M; Toda T
    J Neuromuscul Dis; 2017; 4(4):259-267. PubMed ID: 29081423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Congenital muscular dystrophy with glycosylation defects of alpha-dystroglycan in Japan.
    Matsumoto H; Hayashi YK; Kim DS; Ogawa M; Murakami T; Noguchi S; Nonaka I; Nakazawa T; Matsuo T; Futagami S; Campbell KP; Nishino I
    Neuromuscul Disord; 2005 May; 15(5):342-8. PubMed ID: 15833426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular localization of fukutin and fukutin-related protein in muscle cells.
    Matsumoto H; Noguchi S; Sugie K; Ogawa M; Murayama K; Hayashi YK; Nishino I
    J Biochem; 2004 Jun; 135(6):709-12. PubMed ID: 15213246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dystroglycanopathy muscles lacking functional glycosylation of alpha-dystroglycan retain regeneration capacity.
    Awano H; Blaeser A; Wu B; Lu P; Keramaris-Vrantsis E; Lu Q
    Neuromuscul Disord; 2015 Jun; 25(6):474-84. PubMed ID: 25937147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role of fukutin, a gene responsible for Fukuyama type congenital muscular dystrophy, in cancer cells: a possible role to suppress cell proliferation.
    Yamamoto T; Kato Y; Shibata N; Sawada T; Osawa M; Kobayashi M
    Int J Exp Pathol; 2008 Oct; 89(5):332-41. PubMed ID: 18808525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AAV-mediated transfer of FKRP shows therapeutic efficacy in a murine model but requires control of gene expression.
    Gicquel E; Maizonnier N; Foltz SJ; Martin WJ; Bourg N; Svinartchouk F; Charton K; Beedle AM; Richard I
    Hum Mol Genet; 2017 May; 26(10):1952-1965. PubMed ID: 28334834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan.
    Longman C; Brockington M; Torelli S; Jimenez-Mallebrera C; Kennedy C; Khalil N; Feng L; Saran RK; Voit T; Merlini L; Sewry CA; Brown SC; Muntoni F
    Hum Mol Genet; 2003 Nov; 12(21):2853-61. PubMed ID: 12966029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functions of fukutin, a gene responsible for Fukuyama type congenital muscular dystrophy, in neuromuscular system and other somatic organs.
    Yamamoto T; Shibata N; Saito Y; Osawa M; Kobayashi M
    Cent Nerv Syst Agents Med Chem; 2010 Jun; 10(2):169-79. PubMed ID: 20518731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.