BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

567 related articles for article (PubMed ID: 23562839)

  • 1. The fat side of prostate cancer.
    Zadra G; Photopoulos C; Loda M
    Biochim Biophys Acta; 2013 Oct; 1831(10):1518-32. PubMed ID: 23562839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipids and prostate cancer.
    Suburu J; Chen YQ
    Prostaglandins Other Lipid Mediat; 2012 May; 98(1-2):1-10. PubMed ID: 22503963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth.
    Gang X; Yang Y; Zhong J; Jiang K; Pan Y; Karnes RJ; Zhang J; Xu W; Wang G; Huang H
    Oncotarget; 2016 Mar; 7(12):15135-49. PubMed ID: 26934656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic deregulation in prostate cancer.
    Srihari S; Kwong R; Tran K; Simpson R; Tattam P; Smith E
    Mol Omics; 2018 Oct; 14(5):320-329. PubMed ID: 30215656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into lipid metabolism and prostate cancer (Review).
    Zhang Z; Wang W; Kong P; Feng K; Liu C; Sun T; Sang Y; Duan X; Tao Z; Liu W
    Int J Oncol; 2023 Jun; 62(6):. PubMed ID: 37203395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism.
    Tamura K; Makino A; Hullin-Matsuda F; Kobayashi T; Furihata M; Chung S; Ashida S; Miki T; Fujioka T; Shuin T; Nakamura Y; Nakagawa H
    Cancer Res; 2009 Oct; 69(20):8133-40. PubMed ID: 19826053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic positron emission tomography imaging of cancer: Pairing lipid metabolism with glycolysis.
    Kwee SA; Lim J
    World J Radiol; 2016 Nov; 8(11):851-856. PubMed ID: 27928466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin D and testosterone co-ordinately modulate intracellular zinc levels and energy metabolism in prostate cancer cells.
    Zhang P; Schatz A; Adeyemi B; Kozminski D; Welsh J; Tenniswood M; Wang WW
    J Steroid Biochem Mol Biol; 2019 May; 189():248-258. PubMed ID: 30664926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Androgens and the control of lipid metabolism in human prostate cancer cells.
    Swinnen JV; Verhoeven G
    J Steroid Biochem Mol Biol; 1998 Apr; 65(1-6):191-8. PubMed ID: 9699873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speckle-type POZ protein suppresses lipid accumulation and prostate cancer growth by stabilizing fatty acid synthase.
    Gang X; Xuan L; Zhao X; Lv Y; Li F; Wang Y; Wang G
    Prostate; 2019 Jun; 79(8):864-871. PubMed ID: 30955223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis.
    Deep G; Schlaepfer IR
    Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27384557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New strategies in prostate cancer: targeting lipogenic pathways and the energy sensor AMPK.
    Zadra G; Priolo C; Patnaik A; Loda M
    Clin Cancer Res; 2010 Jul; 16(13):3322-8. PubMed ID: 20423984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR-based metabolomics analysis identifies discriminatory metabolic disturbances in tissue and biofluid samples for progressive prostate cancer.
    Zheng H; Dong B; Ning J; Shao X; Zhao L; Jiang Q; Ji H; Cai A; Xue W; Gao H
    Clin Chim Acta; 2020 Feb; 501():241-251. PubMed ID: 31758937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipogenic effects of androgen signaling in normal and malignant prostate.
    Mah CY; Nassar ZD; Swinnen JV; Butler LM
    Asian J Urol; 2020 Jul; 7(3):258-270. PubMed ID: 32742926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolomic profiling for the identification of novel diagnostic markers and therapeutic targets in prostate cancer: an update.
    Lucarelli G; Loizzo D; Ferro M; Rutigliano M; Vartolomei MD; Cantiello F; Buonerba C; Di Lorenzo G; Terracciano D; De Cobelli O; Bettocchi C; Ditonno P; Battaglia M
    Expert Rev Mol Diagn; 2019 May; 19(5):377-387. PubMed ID: 30957583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Lipid Oxidation Increases Glucose Metabolism and Enhances 2-Deoxy-2-[(18)F]Fluoro-D-Glucose Uptake in Prostate Cancer Mouse Xenografts.
    Schlaepfer IR; Glodé LM; Hitz CA; Pac CT; Boyle KE; Maroni P; Deep G; Agarwal R; Lucia SM; Cramer SD; Serkova NJ; Eckel RH
    Mol Imaging Biol; 2015 Aug; 17(4):529-38. PubMed ID: 25561013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The FABP12/PPARγ pathway promotes metastatic transformation by inducing epithelial-to-mesenchymal transition and lipid-derived energy production in prostate cancer cells.
    Liu RZ; Choi WS; Jain S; Dinakaran D; Xu X; Han WH; Yang XH; Glubrecht DD; Moore RB; Lemieux H; Godbout R
    Mol Oncol; 2020 Dec; 14(12):3100-3120. PubMed ID: 33031638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting prostate cancer metabolism: From metabolites to disease and therapy.
    Cardoso HJ; Carvalho TMA; Fonseca LRS; Figueira MI; Vaz CV; Socorro S
    Med Res Rev; 2021 May; 41(3):1499-1538. PubMed ID: 33274768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer.
    Liu Y
    Prostate Cancer Prostatic Dis; 2006; 9(3):230-4. PubMed ID: 16683009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.