BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 23562839)

  • 1. The fat side of prostate cancer.
    Zadra G; Photopoulos C; Loda M
    Biochim Biophys Acta; 2013 Oct; 1831(10):1518-32. PubMed ID: 23562839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer.
    Costello LC; Franklin RB
    Prostate; 1998 Jun; 35(4):285-96. PubMed ID: 9609552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered metabolism and mitochondrial genome in prostate cancer.
    Dakubo GD; Parr RL; Costello LC; Franklin RB; Thayer RE
    J Clin Pathol; 2006 Jan; 59(1):10-6. PubMed ID: 16394275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prostate Cancer Progression: as a Matter of Fats.
    Scaglia N; Frontini-López YR; Zadra G
    Front Oncol; 2021; 11():719865. PubMed ID: 34386430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Lipid Metabolic Landscape of Cancers and New Therapeutic Perspectives.
    Wang W; Bai L; Li W; Cui J
    Front Oncol; 2020; 10():605154. PubMed ID: 33364199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid metabolism in prostate cancer.
    Wu X; Daniels G; Lee P; Monaco ME
    Am J Clin Exp Urol; 2014; 2(2):111-20. PubMed ID: 25374912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis.
    Zadra G; Photopoulos C; Tyekucheva S; Heidari P; Weng QP; Fedele G; Liu H; Scaglia N; Priolo C; Sicinska E; Mahmood U; Signoretti S; Birnberg N; Loda M
    EMBO Mol Med; 2014 Apr; 6(4):519-38. PubMed ID: 24497570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AKT1 and MYC induce distinctive metabolic fingerprints in human prostate cancer.
    Priolo C; Pyne S; Rose J; Regan ER; Zadra G; Photopoulos C; Cacciatore S; Schultz D; Scaglia N; McDunn J; De Marzo AM; Loda M
    Cancer Res; 2014 Dec; 74(24):7198-204. PubMed ID: 25322691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness.
    Yue S; Li J; Lee SY; Lee HJ; Shao T; Song B; Cheng L; Masterson TA; Liu X; Ratliff TL; Cheng JX
    Cell Metab; 2014 Mar; 19(3):393-406. PubMed ID: 24606897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis.
    Deep G; Schlaepfer IR
    Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27384557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Link between obesity and cancer: role of triglyceride/free fatty acid cycling.
    Gong Y; Dou LJ; Liang J
    Eur Rev Med Pharmacol Sci; 2014 Oct; 18(19):2808-20. PubMed ID: 25339474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer.
    Chen M; Zhang J; Sampieri K; Clohessy JG; Mendez L; Gonzalez-Billalabeitia E; Liu XS; Lee YR; Fung J; Katon JM; Menon AV; Webster KA; Ng C; Palumbieri MD; Diolombi MS; Breitkopf SB; Teruya-Feldstein J; Signoretti S; Bronson RT; Asara JM; Castillo-Martin M; Cordon-Cardo C; Pandolfi PP
    Nat Genet; 2018 Feb; 50(2):206-218. PubMed ID: 29335545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Metabolic Phenotype of Prostate Cancer.
    Eidelman E; Twum-Ampofo J; Ansari J; Siddiqui MM
    Front Oncol; 2017; 7():131. PubMed ID: 28674679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues.
    Myers JS; von Lersner AK; Sang QX
    J Cancer; 2016; 7(11):1452-64. PubMed ID: 27471561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Lipid Oxidation Increases Glucose Metabolism and Enhances 2-Deoxy-2-[(18)F]Fluoro-D-Glucose Uptake in Prostate Cancer Mouse Xenografts.
    Schlaepfer IR; Glodé LM; Hitz CA; Pac CT; Boyle KE; Maroni P; Deep G; Agarwal R; Lucia SM; Cramer SD; Serkova NJ; Eckel RH
    Mol Imaging Biol; 2015 Aug; 17(4):529-38. PubMed ID: 25561013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer.
    Zadra G; Ribeiro CF; Chetta P; Ho Y; Cacciatore S; Gao X; Syamala S; Bango C; Photopoulos C; Huang Y; Tyekucheva S; Bastos DC; Tchaicha J; Lawney B; Uo T; D'Anello L; Csibi A; Kalekar R; Larimer B; Ellis L; Butler LM; Morrissey C; McGovern K; Palombella VJ; Kutok JL; Mahmood U; Bosari S; Adams J; Peluso S; Dehm SM; Plymate SR; Loda M
    Proc Natl Acad Sci U S A; 2019 Jan; 116(2):631-640. PubMed ID: 30578319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic targets for potential prostate cancer therapeutics.
    Twum-Ampofo J; Fu DX; Passaniti A; Hussain A; Siddiqui MM
    Curr Opin Oncol; 2016 May; 28(3):241-7. PubMed ID: 26907571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty Acids and Breast Cancer: Make Them on Site or Have Them Delivered.
    Kinlaw WB; Baures PW; Lupien LE; Davis WL; Kuemmerle NB
    J Cell Physiol; 2016 Oct; 231(10):2128-41. PubMed ID: 26844415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMP-activated protein kinase (AMPK) as a potential therapeutic target independent of PI3K/Akt signaling in prostate cancer.
    Choudhury Y; Yang Z; Ahmad I; Nixon C; Salt IP; Leung HY
    Oncoscience; 2014; 1(6):446-56. PubMed ID: 25594043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch.
    Tennakoon JB; Shi Y; Han JJ; Tsouko E; White MA; Burns AR; Zhang A; Xia X; Ilkayeva OR; Xin L; Ittmann MM; Rick FG; Schally AV; Frigo DE
    Oncogene; 2014 Nov; 33(45):5251-61. PubMed ID: 24186207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.