These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 23562926)
1. Transcellular transport of aconitine across human intestinal Caco-2 cells. Yang C; Li Z; Zhang T; Liu F; Ruan J; Zhang Z Food Chem Toxicol; 2013 Jul; 57():195-200. PubMed ID: 23562926 [TBL] [Abstract][Full Text] [Related]
2. P-glycoprotein is responsible for the poor intestinal absorption and low toxicity of oral aconitine: in vitro, in situ, in vivo and in silico studies. Yang C; Zhang T; Li Z; Xu L; Liu F; Ruan J; Liu K; Zhang Z Toxicol Appl Pharmacol; 2013 Dec; 273(3):561-8. PubMed ID: 24120885 [TBL] [Abstract][Full Text] [Related]
3. The role of efflux transporters on the transport of highly toxic aconitine, mesaconitine, hypaconitine, and their hydrolysates, as determined in cultured Caco-2 and transfected MDCKII cells. Ye L; Yang X; Yang Z; Gao S; Yin T; Liu W; Wang F; Hu M; Liu Z Toxicol Lett; 2013 Feb; 216(2-3):86-99. PubMed ID: 23200901 [TBL] [Abstract][Full Text] [Related]
4. Effects of grapefruit juice and orange juice components on P-glycoprotein- and MRP2-mediated drug efflux. Honda Y; Ushigome F; Koyabu N; Morimoto S; Shoyama Y; Uchiumi T; Kuwano M; Ohtani H; Sawada Y Br J Pharmacol; 2004 Dec; 143(7):856-64. PubMed ID: 15504753 [TBL] [Abstract][Full Text] [Related]
5. Role of P-glycoprotein in the intestinal absorption of tanshinone IIA, a major active ingredient in the root of Salvia miltiorrhiza Bunge. Yu XY; Lin SG; Zhou ZW; Chen X; Liang J; Liu PQ; Duan W; Chowbay B; Wen JY; Li CG; Zhou SF Curr Drug Metab; 2007 May; 8(4):325-40. PubMed ID: 17504222 [TBL] [Abstract][Full Text] [Related]
6. Efficiency of transcellular transport and efflux of flavonoids with different glycosidic units from flavonoids of Litsea coreana L. in a MDCK epithelial cell monolayer model. Chen Z; Ma T; Huang C; Zhang L; Zhong J; Han J; Hu T; Li J Eur J Pharm Sci; 2014 Mar; 53():69-76. PubMed ID: 24365259 [TBL] [Abstract][Full Text] [Related]
7. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine. Dahan A; Sabit H; Amidon GL Drug Metab Dispos; 2009 Oct; 37(10):2028-36. PubMed ID: 19589874 [TBL] [Abstract][Full Text] [Related]
8. Intestinal absorption mechanisms of berberine, palmatine, jateorhizine, and coptisine: involvement of P-glycoprotein. Zhang X; Qiu F; Jiang J; Gao C; Tan Y Xenobiotica; 2011 Apr; 41(4):290-6. PubMed ID: 21319959 [TBL] [Abstract][Full Text] [Related]
9. Vectorial transport of fexofenadine across Caco-2 cells: involvement of apical uptake and basolateral efflux transporters. Ming X; Knight BM; Thakker DR Mol Pharm; 2011 Oct; 8(5):1677-86. PubMed ID: 21780830 [TBL] [Abstract][Full Text] [Related]
10. Disposition mechanisms of raloxifene in the human intestinal Caco-2 model. Jeong EJ; Lin H; Hu M J Pharmacol Exp Ther; 2004 Jul; 310(1):376-85. PubMed ID: 15020665 [TBL] [Abstract][Full Text] [Related]
11. Intestinal transport of pure diester-type alkaloids from an aconite extract across the Caco-2 cell monolayer model. Li N; Tsao R; Sui Z; Ma J; Liu Z; Liu Z Planta Med; 2012 May; 78(7):692-7. PubMed ID: 22411726 [TBL] [Abstract][Full Text] [Related]
12. Multidrug resistance-associated protein 2 is involved in the efflux of Aconitum alkaloids determined by MRP2-MDCKII cells. Dai P; Zhu L; Yang X; Zhao M; Shi J; Wang Y; Lu L; Liu Z Life Sci; 2015 Apr; 127():66-72. PubMed ID: 25744397 [TBL] [Abstract][Full Text] [Related]
13. Effect of quercetin on the uptake and efflux of aristolochic acid I from Caco-2 cell monolayers. Kimura O; Fujii Y; Haraguchi K; Ohta C; Koga N; Kato Y; Endo T J Pharm Pharmacol; 2016 Jul; 68(7):883-9. PubMed ID: 27166429 [TBL] [Abstract][Full Text] [Related]
14. Absorption mechanism of ginsenoside compound K and its butyl and octyl ester prodrugs in Caco-2 cells. Zhang B; Zhu XM; Hu JN; Ye H; Luo T; Liu XR; Li HY; Li W; Zheng YN; Deng ZY J Agric Food Chem; 2012 Oct; 60(41):10278-84. PubMed ID: 23013417 [TBL] [Abstract][Full Text] [Related]
15. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin. Liu W; Feng Q; Li Y; Ye L; Hu M; Liu Z Toxicol Appl Pharmacol; 2012 Dec; 265(3):316-24. PubMed ID: 22982073 [TBL] [Abstract][Full Text] [Related]
16. Transport characteristics of candesartan in human intestinal Caco-2 cell line. Zhou L; Chen X; Gu Y; Liang J Biopharm Drug Dispos; 2009 Jul; 30(5):259-64. PubMed ID: 19562680 [TBL] [Abstract][Full Text] [Related]
17. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Dahan A; Amidon GL Mol Pharm; 2009; 6(1):19-28. PubMed ID: 19248230 [TBL] [Abstract][Full Text] [Related]
18. Epithelial transport of deoxynivalenol: involvement of human P-glycoprotein (ABCB1) and multidrug resistance-associated protein 2 (ABCC2). Videmann B; Tep J; Cavret S; Lecoeur S Food Chem Toxicol; 2007 Oct; 45(10):1938-47. PubMed ID: 17543436 [TBL] [Abstract][Full Text] [Related]
19. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. Hilgendorf C; Spahn-Langguth H; RegÄrdh CG; Lipka E; Amidon GL; Langguth P J Pharm Sci; 2000 Jan; 89(1):63-75. PubMed ID: 10664539 [TBL] [Abstract][Full Text] [Related]
20. In vitro characterization of ABC transporters involved in the absorption and distribution of liensinine and its analogs. Yu L; Shen Q; Zhou Q; Jiang H; Bi H; Huang M; Zhou H; Zeng S J Ethnopharmacol; 2013 Nov; 150(2):485-91. PubMed ID: 24036064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]