These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 23562965)
21. An apolipoprotein AI mimetic peptide: membrane interactions and the role of cholesterol. Epand RM; Epand RF; Sayer BG; Melacini G; Palgulachari MN; Segrest JP; Anantharamaiah GM Biochemistry; 2004 May; 43(17):5073-83. PubMed ID: 15109266 [TBL] [Abstract][Full Text] [Related]
22. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid. Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597 [TBL] [Abstract][Full Text] [Related]
23. Penetration of three transmembrane segments of Slc11a1 in lipid bilayers. Qi H; Wang Y; Chu H; Wang W; Mao Q Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():82-92. PubMed ID: 24299979 [TBL] [Abstract][Full Text] [Related]
24. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer. Wenk MR; Alt T; Seelig A; Seelig J Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676 [TBL] [Abstract][Full Text] [Related]
25. Interaction of Hsp90 with phospholipid model membranes. Zhang M; Wang D; Li P; Sun C; Xu R; Geng Z; Xu W; Dai Z Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):611-616. PubMed ID: 29166573 [TBL] [Abstract][Full Text] [Related]
26. Solution structure and interaction of the antimicrobial polyphemusins with lipid membranes. Powers JP; Tan A; Ramamoorthy A; Hancock RE Biochemistry; 2005 Nov; 44(47):15504-13. PubMed ID: 16300399 [TBL] [Abstract][Full Text] [Related]
27. The interactions of antimicrobial peptides derived from lysozyme with model membrane systems. Hunter HN; Jing W; Schibli DJ; Trinh T; Park IY; Kim SC; Vogel HJ Biochim Biophys Acta; 2005 Mar; 1668(2):175-89. PubMed ID: 15737328 [TBL] [Abstract][Full Text] [Related]
28. Interaction of the antimicrobial peptide gomesin with model membranes: a calorimetric study. Domingues TM; Mattei B; Seelig J; Perez KR; Miranda A; Riske KA Langmuir; 2013 Jul; 29(27):8609-18. PubMed ID: 23755822 [TBL] [Abstract][Full Text] [Related]
29. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
30. Divorcing folding from function: how acylation affects the membrane-perturbing properties of an antimicrobial peptide. Vad B; Thomsen LA; Bertelsen K; Franzmann M; Pedersen JM; Nielsen SB; Vosegaard T; Valnickova Z; Skrydstrup T; Enghild JJ; Wimmer R; Nielsen NC; Otzen DE Biochim Biophys Acta; 2010 Apr; 1804(4):806-20. PubMed ID: 20026432 [TBL] [Abstract][Full Text] [Related]
31. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
32. Structure-activity relationship of the antimicrobial peptide gomesin: the role of peptide hydrophobicity in its interaction with model membranes. Mattei B; Miranda A; Perez KR; Riske KA Langmuir; 2014 Apr; 30(12):3513-21. PubMed ID: 24606158 [TBL] [Abstract][Full Text] [Related]
33. Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy. Shaw JE; Epand RF; Hsu JC; Mo GC; Epand RM; Yip CM J Struct Biol; 2008 Apr; 162(1):121-38. PubMed ID: 18180166 [TBL] [Abstract][Full Text] [Related]
34. Membrane activity of two short Trp-rich amphipathic peptides. Bozelli JC; Yune J; Dang X; Narayana JL; Wang G; Epand RM Biochim Biophys Acta Biomembr; 2020 Jul; 1862(7):183280. PubMed ID: 32220553 [TBL] [Abstract][Full Text] [Related]
35. Interaction of human apolipoprotein A-I with model membranes exhibiting lipid domains. Arnulphi C; Sánchez SA; Tricerri MA; Gratton E; Jonas A Biophys J; 2005 Jul; 89(1):285-95. PubMed ID: 15849246 [TBL] [Abstract][Full Text] [Related]
36. Beyond electrostatics: Antimicrobial peptide selectivity and the influence of cholesterol-mediated fluidity and lipid chain length on protegrin-1 activity. Henderson JM; Iyengar NS; Lam KLH; Maldonado E; Suwatthee T; Roy I; Waring AJ; Lee KYC Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182977. PubMed ID: 31077677 [TBL] [Abstract][Full Text] [Related]
37. Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides. Pokorny A; Almeida PF Biochemistry; 2005 Jul; 44(27):9538-44. PubMed ID: 15996108 [TBL] [Abstract][Full Text] [Related]
38. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium. Wieprecht T; Apostolov O; Beyermann M; Seelig J J Mol Biol; 1999 Dec; 294(3):785-94. PubMed ID: 10610796 [TBL] [Abstract][Full Text] [Related]
39. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Manzini MC; Perez KR; Riske KA; Bozelli JC; Santos TL; da Silva MA; Saraiva GK; Politi MJ; Valente AP; Almeida FC; Chaimovich H; Rodrigues MA; Bemquerer MP; Schreier S; Cuccovia IM Biochim Biophys Acta; 2014 Jul; 1838(7):1985-99. PubMed ID: 24743023 [TBL] [Abstract][Full Text] [Related]
40. Conformational and functional study of magainin 2 in model membrane environments using the new approach of systematic double-D-amino acid replacement. Wieprecht T; Dathe M; Schümann M; Krause E; Beyermann M; Bienert M Biochemistry; 1996 Aug; 35(33):10844-53. PubMed ID: 8718876 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]